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Top-k queries: what and why

Top-k queries aim to retrieve, 
from a potentially (very) large result set, 

only the k (k  1) best answers

◼ Best = most important/interesting/relevant/… 

◼ The need for suck kind of queries arises in a variety of modern scenarios, 
such as e-commerce, scientific DB’s, Web search, multimedia systems, etc.

◼ The definition of top-k queries requires a system able to "rank" objects
(the 1st best result, the 2nd one, …)

Ranking = ordering the DB objects based on their "relevance" to the query
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No result!
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Relaxing a search criterion…
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Even here no result, yet…

…the system is

anyway able to 

return "good" 

answers!
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Top-k queries: the naїve approach (1)

◼ There is a straightforward way to compute the result of any top-k query

◼ Assume that, given a query q, there is a scoring function S that assigns to 
each tuple t a numerical score, according to which tuples are ranked
◼ E.g. S(t) = t.Points + t.Rebounds

ALGORITHM Top-k-naїve

Input: a query q, a dataset R

Output: the k highest-scored tuples with respect to S

1. for all tuples t in R: compute S(t); // S(t) is the "score" of t

2. sort tuples based on their scores;

3. return the first k highest-scored tuples;

4. end.

Name Points Rebounds …

Shaquille O'Neal 1669 760 …

Tracy McGrady 2003 484 …

Kobe Bryant 1819 392 …

Yao Ming 1465 669 …

Dwyane Wade 1854 397 …

Steve Nash 1165 249 …

… … … …
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Top-k queries: the naїve approach (2)

◼ Processing top-k queries using the naїve algorithm is very expensive for 
large databases, as it requires sorting a large amount of data

◼ The problem is even worse if the input consists of more than one relation
S(t) = t.Points + t.Rebounds

◼ Now we have first to join all tuples, which is also a costly operation

◼ Note that in the above example the join is 1-1, but in general it can be M-N
(each tuple can join with an arbitrary number of tuples)

Name Rebounds …

Shaquille O'Neal 760 …

Tracy McGrady 484 …

Kobe Bryant 392 …

Yao Ming 669 …

Dwyane Wade 397 …

Steve Nash 249 …

… … …

Name Points …

Shaquille O'Neal 1669 …

Tracy McGrady 2003 …

Kobe Bryant 1819 …

Yao Ming 1465 …

Dwyane Wade 1854 …

Steve Nash 1165 …

… … …
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Top-k queries in SQL (standard)

◼ Expressing a top-k query in SQL requires the capability of:

1) Ordering the tuples according to their scores

2) Limiting the output cardinality to k tuples

◼ We first consider the case in which the following template query written in
standard SQL is used, in which only point 1) above is present:

SELECT <some attributes>

FROM R

WHERE <Boolean conditions>

ORDER BY  S(…) [DESC]
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Limits of the ORDER BY solution

◼ Consider the following queries:

A) SELECT *

FROM UsedCarsTable

WHERE Vehicle = ‘Audi/A4’ AND Price <= 21000

ORDER BY 0.8*Price + 0.2*Mileage

B) SELECT *

FROM UsedCarsTable

WHERE Vehicle = ‘Audi/A4’

ORDER BY 0.8*Price + 0.2*Mileage

◼ The values 0.8 and 0.2, also called "weights", are a way to normalize
ranges and/or express our preferences on Price and Mileage

◼ Query A will likely lose some relevant answers! (near-miss)
◼ e.g., a car with a price of $21,500 but very low mileage

◼ Query B will return as result all Audi/A4 in the DB! (information overload)
◼ …and the situation is horrible if we don’t specify a vehicle type!!
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ORDER BY solution & C/S architecture (1)

◼ Before considering other solutions, let’s take a closer look at how the DBMS 
server sends the result of a query to the client application

◼ On the client side we work "1 tuple at a time" by using, e.g., rs.next()
◼ However this does not mean that a result set is shipped (transmitted) 

1 tuple at a time from the server to the client 

◼ Most (all?) DBMSs implement a feature known as row blocking, aiming at
reducing the transmission overhead

◼ Row blocking:
1. The DBMS allocates some buffers (a "block") on the server side

2. It fills the buffers with tuples of the query result

3. It ships the whole block of tuples to the client

4. The client consumes (reads) the tuples in the block

5. Repeat from 2 until no more tuples (rows) are in the result set

OBJ Price

t07 10

t24 20

t16 32

t14 38

t21 40

t06 46

… …

block of tuples b
lo

c
k

OBJ Price

t07 10

t24 20

t16 32
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◼ Why row blocking is not enough? I.e.: why do we need "k"?
◼ Rationale: just fetch the tuples you need

◼ E.g.: In DB2 the block size is established when the application connects to the 
DB (default size: 32 KB)

◼ If the buffers can hold, say, 1000 tuples but the application just looks at the 
first, say, 10, we waste resources:

◼ We fetch from disk and process too many (1000) tuples

◼ We transmit too many data (1000 tuples) over the network

◼ If we reduce the block size, then we might incur a large transmission overhead
for queries with large result sets

◼ Bear in mind that we don’t have "just one query": our application might
consist of a mix of queries, each one with its own requirements

◼ Also observe that the DBMS "knows nothing" about the client’s intention, i.e., 
it will optimize and evaluate the query so as to deliver the whole result set 
(more on this later)

ORDER BY solution & C/S architecture (2)
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Top-k queries in SQL (extended)

◼ The first step to support top-k queries is simple: extend SQL with a new 
clause that explicitly limits the cardinality of the result:

SELECT <some attributes>

FROM <some relation(s)>

WHERE <Boolean conditions>

[GROUP BY <some grouping attributes>]

ORDER BY   S(…) [DESC]

STOP AFTER k

where k is a positive integer

◼ This is the syntax proposed in [CK97], most DBMSs have proprietary
(equivalent) extensions, e.g.:
◼ FETCH FIRST k ROWS ONLY or LIMIT k (DB2), LIMIT TO k ROWS

(ORACLE),…

◼ [CK97] also allows a numerical expression, uncorrelated with the rest of 
the query, in place of k

http://www-db.disi.unibo.it/courses/TBD/papers/CK97.pdf
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Semantics of top-k queries

◼ Consider a top-k query with the clause STOP AFTER k

◼ Conceptually, the rest of the query is evaluated as usual, leading to a table T 

◼ Then, only the first k tuples of T become part of the result

◼ If T contains at most k tuples, STOP AFTER k has no effect

◼ If more than one set of tuples satisfies the ORDER BY directive, any of such
sets is a valid answer (non-deterministic semantics) 

SELECT *

FROM   R

ORDER BY Price

STOP AFTER 3

◼ If no ORDER BY clause is present, then any set of k tuples from T is a valid 
(correct) answer

OBJ Price

t15 50

t24 40

t26 30

t14 30

t21 40

R

Both are valid results

OBJ Price

t26 30

t14 30

t21 40

OBJ Price

t26 30

t14 30

t24 40
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Top-k queries: examples (1)

◼ The best NBA player (considering points and rebounds):

SELECT *

FROM   NBA

ORDER BY Points + Rebounds DESC

STOP AFTER 1

◼ The 2 cheapest chinese restaurants

SELECT *

FROM   RESTAURANTS

WHERE  Cuisine = `chinese’

ORDER BY Price

STOP AFTER 2

◼ The top-5% highest paid employees

SELECT E.* -- a top-k query with a numerical expression

FROM   EMP E

ORDER BY E.Salary DESC

STOP AFTER (SELECT COUNT(*)/20 FROM EMP) 
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Top-k queries: examples (2)

◼ The top-5 Audi/A4 (based on price and mileage)

SELECT *

FROM USEDCARS

WHERE Vehicle = ‘Audi/A4’

ORDER BY 0.8*Price + 0.2*Mileage

STOP AFTER 5

◼ The 2 hotels closest to the Bologna airport
SELECT H.* -- a top-k distance join query

FROM   HOTELS H, AIRPORTS A

WHERE  A.Code = ‘BLQ’

ORDER BY distance(H.Location,A.Location)

STOP AFTER 2

Location is a “point” UDT (User-defined Data Type) 

distance is a UDF (User-Defined Function)



16

Evaluation of top-k queries

◼ Concerning evaluation, there are two basic aspects to consider:
◼ query type: 1 relation, many relations, aggregate results, …

◼ access paths: no index, indexes on all/some ranking attributes

◼ The simplest case to analyze is the top-k selection query, where only 1 
relation is involved:

SELECT <some attributes>

FROM R

WHERE <Boolean conditions>

ORDER BY   S(…) [DESC]

STOP AFTER k
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Top-k queries: algebraic representation

◼ In order to concisely reason on alternative evaluation strategies, we have first 
to extend the relational algebra (RA)

◼ To this end, we introduce a logical Top operator, denoted τk,S, which returns
the k top-ranked tuples according to S
◼ Unless otherwise specified, we assume that S has to be maximized

◼ Later we will introduce a more powerful representation in which ranking 
(not just "limiting") is a "first-class citizen"

Restaurants

sCuisine = ‘Chinese’

t2, -Price
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Implementing Top: physical operators

◼ How can the Top operator be evaluated?

2 relevant cases:

Top-Scan: the stream of tuples entering the Top operator is already sorted 
according to S: in this case it is sufficient to just read (consume) the first k 
tuples from the input

Top-Sort: the input stream is not S-ordered; if k is not too large (which is the 
typical case), rather than sorting the whole input we can perform an 
in-memory sort

Top-Scan can work in pipeline: 

it can return a tuple as soon as it reads it!

Top-Sort cannot work in pipeline: 

it has to read the whole input before returning the first tuple!
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The Top-Sort physical operator: open method

◼ The idea of the Top-Sort method is to maintain in a main-memory buffer B 
only the best k tuples seen so far

RATIONALE: if tuple t is not among the top-k tuples seen so far, then t cannot 
be part of the result

◼ A crucial issue is how to organize B so that the operations of lookup, 
insertion and removal can be performed efficiently

◼ Since B should act as a priority queue (the priority is given by the score), it 
can be implemented using a heap

Method open

Input: k, S

1. create a priority queue B of size k; // B can hold at most k tuples

// B[i] is the current i-th best tuple,  and B[i].score is its score

2. invoke open on the child node;

3. return.
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The Top-Sort physical operator: next method

◼ The next method initially fills B with the first k tuples
◼ For simplicity, the pseudocode does not consider the case when the 

input has less than k tuples

◼ Then, for each new read tuple t, it compares t with B[k], the worst tuple 
currently in B
◼ If S(t) > B[k].score, then B[k] is dropped and t is inserted into B

◼ If S(t) < B[k].score, t cannot be one of the top-k tuples

◼ If S(t) = B[k].score, it is safe to discard t since Top has a non-
deterministic semantics!

Method next

1. for i=1 to k: // fills B with the first k tuples

2. t := input_node.next(); ENQUEUE(B,t);  // inserts t in B

3. while (input_node.has_next()) do:

4. t := input_node.next();

4. if S(t) > B[k].score then: {DELETE(B,B[k]); ENQUEUE(B,t)};

5. return DEQUEUE(B). // returns the best tuple in B
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Top-Sort: a simple example

◼ Let k = 2

ENO Salary

E1 1000

E2 1200

E3 1400

E4 1100

E5 1500

Order ENO Salary

2 E1 1000

1 E2 1200

EMP B

Order ENO Salary

1 E3 1400

2 E2 1200

compare

insert E3

Order ENO Salary

1 E3 1400

2 E2 1200

compare

compare

Order ENO Salary

2 E3 1400

1 E5 1500

insert E5
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Experimental results from [CK97] (1)

SELECT E.* FROM EMP E

ORDER BY E.Salary DESC

STOP AFTER N;

In-memory sort

No Index available

The naïve method sorts ALL 

the tuples!

▪ TRADITIONAL = row blocking
(about 500 tuples)

▪ TRAD(NRB) = no row blocking
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Results from [CK97] (2)

SELECT E.* FROM EMP E

ORDER BY E.Salary DESC

STOP AFTER N;

Both TRADITIONAL and TRAD(NRB) 

still scan and sort the whole table

Unclustered Index on Emp.Salary

If the DBMS ignores that we 

just need k tuples, it will not 

use the index: it will scan the 

EMP table and then sort ALL 

the N tuples! 
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Results from [CK97] (3)

SELECT E.* FROM EMP E

ORDER BY E.Salary DESC

STOP AFTER N;

Row blocking: 

poor performance for small N values

No row blocking: 

poor performance for large N values

Clustered Index on Emp.Salary
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Multi-dimensional top-k queries

◼ In the general case, the scoring function S involves more than one attribute: 

SELECT *

FROM   USEDCARS

WHERE  Vehicle = ‘Audi/A4’

ORDER BY 0.8*Price + 0.2*Mileage

STOP AFTER 5;

◼ If no index is available, we cannot do better than apply a Top-Sort operator by 
sequentially reading ALL the tuples

◼ If an index is available on Vehicle the situation is better, yet it depends on how
many Audi/A4 are in the DB 

◼ Back to the 1st case if the WHERE clause is not present at all 

◼ Assume we have an index on the ranking attributes (i.e., Price and Mileage)
◼ How can we use it to solve a top-k query? 

◼ What kind of index should we use?

◼ We first need to better understand the underlying geometry of the problem…
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The attribute space: a geometric view

◼ Consider the 2-dimensional (2-dim) attribute space (Price,Mileage) 
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▪ Each tuple is represented by a 
2-dim point (p,m): 

▪ p is the Price value

▪ m is the Mileage value

▪ Intuitively, minimizing

0.8*Price + 0.2*Mileage

is equivalent to look for points
“close” to (0,0)

▪ (0,0) is our (ideal) "target value"
(i.e., a free car with 0 km’s!)
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The role of weights (preferences)

◼ Our preferences (e.g., 0.8 and 0.2) are essential to determine the result

◼ With preferences (0.8,0.2) the best car is C6, then C5, etc.

◼ In general, preferences are a way to determine, given points (p1,m1) and 
(p2,m2), which of them is "closer" to the target point (0,0) 
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▪ Consider the line l(v) of equation

0.8*Price + 0.2*Mileage = v

where v is a constant

▪ This can also be written as

Mileage = -4*Price + 5*v

from which we see that all the 
lines l(v) have a slope = -4

▪ By definition, all the points of l(v) 
are “equally good” to us

v=20 v=34v=16
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Changing the weights

◼ Clearly, changing the weight values will likely lead to a different result

◼ On the other hand, if weights do not change too much, the results of two top-
k queries will likely have a high degree of overlap 
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▪ With

0.8*Price + 0.2*Mileage

the best car is C6

▪ With

0.5*Price + 0.5*Mileage

the best cars are C5 and C11

v=20

v=16 0.8*Price + 0.2*Mileage

0.5*Price + 0.5*Mileage
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Changing the target

◼ The target of a query is not necessarily (0,0), rather it can be any point 
q=(q1,q2) (qi = query value for the i-th attribute) 

◼ Example: assume you are looking for a house with a 1000 m2 garden and 3 
bedrooms; then (1000,3) is the target for your query
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▪ In general, in order to determine
the "goodness" of a tuple t, 
we compute its “distance” from 
the target point q:

The lower the distance from q, 
the better t is

Note that distance values can always be converted into goodness 

"scores", so that a higher score means a better match

Just change the sign and possibly add a constant,…

q



30

Top-k tuples = k-nearest neighbors

◼ In order to provide a homogeneous management of the problem when using an 
index, it is useful to consider distances rather than scores
◼ since most indexes are "distance-based"

◼ Therefore, the model is now:
◼ A D-dimensional (D1) attribute space A = (A1,A2,…,AD) of ranking attributes

◼ A relation R(A1,A2,…,AD,B1,B2,…), where B1,B2,… are other attributes

◼ A target (query) point q = (q1,q2,…,qD), q  A

◼ A function d: A x A → , that measures the distance between points of A 
(e.g., d(t,q) is the distance between t and q)

◼ Under this model, a top-k query is transformed into a so-called

k-Nearest Neighbors (k-NN) Query

▪ Given a point q, a relation R, an integer k  1, and a distance function d

▪ Determine the k tuples in R that are closest to q according to d
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Some common distance functions

◼ The most commonly used distance functions are Lp-norms:

◼ Relevant cases are:
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Shaping the attribute space

◼ Changing the distance function leads to a different shaping of the attribute
space (each colored "stripe" in the figures corresponds to points with 
distance values between v and v+1, v integer)

L1; q=(7,12)
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L2; q=(7,12)

Note that, for 2 tuples t1 and t2, it is possible to have 

L1(t1,q) < L1(t2,q) and L2(t2,q) < L2(t1,q)

E.g.: t1=(13,12)

t2=(12,10)
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Distance functions with weights

◼ The use of weights just leads to "stretch" some of the coordinates:

 iiii

D

1i

iii1

D

1i

2

iii2

qtwmaxW)q;(t,L

qtwW)q;(t,L

qtwW)q;(t,L

−=

−=

−=



=

=



 (hyper-)ellipsoids

(hyper-)romboids

(hyper-)rectangles

▪ Thus, the scoring function

0.8*Price + 0.2*Mileage

is just a particular case of weighted L1distance
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Shaping with weights the attribute space

◼ The figures show the effects of using L1 with different weights

◼ Note that, if w2 > w1, then the hyper-romboids are more elongated 
along A1 (i.e., difference on A1 values is less important than an equal 
difference on A2 values)
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Processing top-k queries with indexes

◼ Using a multi-attribute B+-tree, that organizes the tuples according to the 
order A1,A2,…,AD (e.g., first on Price, then on Mileage) is not going to 
perform well
◼ Same problems as with window queries (poor spatial clustering)

◼ It is however possible to use D single-attribute B+-trees, which we will 
cover when dealing with top-k join queries

◼ Much better is to consider a spatial index, like the R-tree…
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R-tree basic properties

◼ The R-tree is a dynamic, height-balanced, and paged tree

◼ Each node stores a variable number of entries

Leaf node:
◼ An entry E has the form E=(tuple-key,RID), where tuple-key is the 

“spatial key” (position) of the tuple whose address is RID

Internal node:
◼ An entry E has the form E=(MBB,PID), where MBB is the "Minimum 

Bounding Box" (i.e., with sides parallel to the coordinate axes) of all the 
points reachable from (“under”) the child node whose address is PID

A B C

D
I J K L MD E F G H

A B

▪ We can uniform things by saying
that each entry has the format

E=(key,ptr)

▪ If N is the node pointed by E.ptr, 
then E.key is the "spatial key" of N, 
also denoted as Reg(N) E=(tuple-key,RID)

E=(MBB,PID)
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Search: range query

◼ We start with a query type simpler than k-NN queries, namely the

◼ The region of D defined as Reg(q) = {p: p D , d(p,q)  r} is also called the 
query region (thus, the result is always contained in the query region)
◼ For simplicity, both d and r are understood in the notation Reg(q)

◼ There are several variants of range queries, such as point queries (r = 0, look 
for a perfect match) and window queries (a special case of range queries 
obtained when the distance function is a weighted L)

◼ The algorithm for processing a range query is extremely simple:
◼ Start from the root and, for each entry E and corresponding node N, 

check if Reg(N) intersects Reg(q)

◼ On leaf nodes, check for each entry E if E.key  Reg(q), that is, if 
d(E.key,q)  r. 

Range Query

▪ Given a point q, a relation R, a search radius r  0, 
and a distance function d, 

▪ Determine all the objects t in R such that d(t,q)  r
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The dMIN lower bound

◼ For a node N, let dMIN(q,Reg(N)) = infp{d(q,p) | p  Reg(N)} be the minimum 
possible distance between q and a point in Reg(N)

▪ The “MinDist” dMIN(q,Reg(N)) is a lower bound on the 
distances from q to any indexed point reachable from N

dMIN(q,Reg(N1))

dMIN(q,Reg(N2))
dMIN(q,Reg(N3))

N1

N2

N3▪ We can make the following 
basic observation:

Reg(q)  Reg(N)  


dMIN(q,Reg(N))  r

r
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Computing dMIN for weighted Lp norms

◼ Computing dMIN for a weighted Lp norm has complexity O(D)

◼ Let the MBB of node N (i.e., Reg(N)) be: Reg(N) = [l1,h1]x…x[lD,hD]

◼ For the i-th coordinate let us define the "offset" of query q = (q1,…,qD) with 
respect to Reg(N) as:

i = ቐ
qi − hi if qi ≥ hi
li − qi if li ≥ qi
0 otherwise

◼ Then, dMIN is computed as:

Lp,MIN q, Reg N ;W = ෍

i=1

D

wii
p

1/p
N

q=(q1,q2)

(l1,h2)

1

2
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Search: k-NN query

◼ We now present an algorithm, called kNNOptimal [BBK+97], for solving k-NN 
queries with an R-tree that is I/O-optimal
◼ The algorithm also applies to many other index structures (e.g., the M-tree) 

◼ We start with the basic case k=1

◼ For a given query point q, let tNN(q) be the 1st nearest neighbor (1-NN = NN) of q in 
R, and denote with rNN = d(q, tNN(q)) its distance from q
◼ Clearly, rNN is only known when the algorithm terminates

Theorem:

Any correct algorithm for 1-NN queries must visit at least all the nodes N whose 
MinDist is strictly less than rNN, i.e., dMIN(q,Reg(N)) < rNN

Proof: Assume that an algorithm A stops by reporting as NN of q a point t, 

and that A does not read a node N such that (s.t.) dMIN(q,Reg(N)) < d(q,t); 
then Reg(N) might contain a point t’ s.t. d(q,t’) < d(q,t), thus contradicting the 
hypothesis that t is the NN of q ◼

http://www-db.disi.unibo.it/courses/TBD/papers/BBK+97.pdf
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The logic of the kNNOptimal Algorithm

◼ The kNNOptimal algorithm uses a priority queue PQ, whose elements are pairs
[ptr(N), dMIN(q,Reg(N))]

◼ PQ is ordered by increasing values of dMIN(q,Reg(N))
◼ DEQUEUE(PQ) extracts from PQ the pair with minimal MinDist

◼ ENQUEUE(PQ, [ptr(N), dMIN(q,Reg(N))]) performs an ordered insertion of the 
pair in the queue

◼ Pruning of the nodes is based on the following observation:

◼ In the description of the algorithm, the pruning of pairs of PQ based on the 
above criterion is concisely denoted as UPDATE(PQ)

◼ With a slight abuse of terminology, we also say that "the node N is in PQ" 
meaning that the corresponding pair [ptr(N), dMIN(q,Reg(N))] is in PQ

◼ Intuitively, kNNOptimal performs a "range search with a variable (shrinking) 
search radius" until no improvement is possible anymore

▪ If, at a certain point of the execution of the algorithm, we have found a 
point t s.t. d(q,t) = r, 

▪ Then, all the nodes N with dMIN(q,Reg(N))  r can be excluded from the 
search, since they cannot lead to an improvement of the result
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The kNNOptimal Algorithm (case k=1)

Input: query point q, index tree with root node RN

Output: tNN(q), the nearest neighbor of q, and rNN = d(q, tNN(q))

1. Initialize PQ with [ptr(RN),0]; // starts from the root node

2. rNN := ; // this is the initial "search radius"

3. while PQ ≠ : // until the queue is not empty…

4. [ptr(N), dMIN(q,Reg(N))] := DEQUEUE(PQ); // … get the closest pair…

5. Read(N); // … and reads the node

6. if N is a leaf then: for each point t in N:

7. if d(q,t) < rNN then: {tNN(q) := t; rNN := d(q,t); UPDATE(PQ)}

// reduces the search radius and prunes nodes

8. else: for each child node Nc of N:

9. if dMIN(q,Reg(Nc)) < rNN then:

10. ENQUEUE(PQ,[ptr(Nc), dMIN(q,Reg(Nc))]);

11. return tNN(q) and rNN;

12. end.
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kNNOptimal in action

q

RN

▪ Nodes are numbered 
following the order in 
which they are accessed 

▪ Objects are numbered as 
they are found to 
improve (reduce) the 
search radius

▪ The accessed leaf nodes 
are shown in red
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kNNOptimal in action

q

RN

▪ Nodes are numbered 
following the order in 
which they are accessed 

▪ Objects are numbered as 
they are found to 
improve (reduce) the 
search radius

▪ The accessed leaf nodes 
are shown in red

N1
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kNNOptimal in action

q

RN

N2

▪ Nodes are numbered 
following the order in 
which they are accessed 

▪ Objects are numbered as 
they are found to 
improve (reduce) the 
search radius

▪ The accessed leaf nodes 
are shown in red

N1
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kNNOptimal in action

q

RN

N2

▪ Nodes are numbered 
following the order in 
which they are accessed 

▪ Objects are numbered as 
they are found to 
improve (reduce) the 
search radius

▪ The accessed leaf nodes 
are shown in red

N3

t1

N1
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kNNOptimal in action

q

RN

N2

▪ Nodes are numbered 
following the order in 
which they are accessed 

▪ Objects are numbered as 
they are found to 
improve (reduce) the 
search radius

▪ The accessed leaf nodes 
are shown in red

N3

t1

N1
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kNNOptimal in action

q

RN

N2

N4

▪ Nodes are numbered 
following the order in 
which they are accessed 

▪ Objects are numbered as 
they are found to 
improve (reduce) the 
search radius

▪ The accessed leaf nodes 
are shown in red

N3

t1

N1
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kNNOptimal in action

q

RN

N5

N2

N4

▪ Nodes are numbered 
following the order in 
which they are accessed 

▪ Objects are numbered as 
they are found to 
improve (reduce) the 
search radius

▪ The accessed leaf nodes 
are shown in red

N3

t1

N1
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kNNOptimal in action

q

RN

N5

N2

N4

▪ Nodes are numbered 
following the order in 
which they are accessed 

▪ Objects are numbered as 
they are found to 
improve (reduce) the 
search radius

▪ The accessed leaf nodes 
are shown in red

N3

t1

N1

N6t2
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kNNOptimal in action

q

RN

N5

N2

N4

▪ Nodes are numbered 
following the order in 
which they are accessed 

▪ Objects are numbered as 
they are found to 
improve (reduce) the 
search radius

▪ The accessed leaf nodes 
are shown in red

N3

t1

N1

N6t2
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kNNOptimal in action

q

RN

N5

N7

N2

N4

▪ Nodes are numbered 
following the order in 
which they are accessed 

▪ Objects are numbered as 
they are found to 
improve (reduce) the 
search radius

▪ The accessed leaf nodes 
are shown in red

N3

t1

N1

N6t2
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kNNOptimal: The best used car

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

Action PQ

Read(RN) (N1,16.4) (N2,19)

Read(N1) (N3,16.4) (N2,19) (N4,22.9)

Read(N3) (N2,19)

Read(N2) (N5,19)

Read(N5)

Return(C6,19)

N1

N2

N3

N4

N5 N6

d = 0.7*Price + 0.3*Mileage
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N1 16.4

N2 19

N3 16.4

N4 22.9

N5 19

N6 26

tuple d

C5 20

C6 19

C11 24

… …
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Correctness and optimality of kNNOptimal

◼ The kNNOptimal algorithm is clearly correct

◼ To show that it is also I/O-optimal, that is, it reads the minimum number of 
nodes, it is sufficient to prove the following 

Theorem:
The kNNOptimal algorithm for 1-NN queries never reads a node N whose MinDist 

is strictly larger than rNN, i.e., dMIN(q,Reg(N)) > rNN

Proof:

▪ Node N is read only if, at some execution step, it becomes the 1st element in PQ

▪ Let N1 be the node containing tNN(q) , N2 its parent node, N3 the parent node of 

N2, and so on, up to Nh = RN (h = height of the tree) 

▪ Now observe that, by definition of MinDist, it is:

rNN ≥ dMIN(q,Reg(N1)) ≥ dMIN(q,Reg(N2)) ≥ … ≥ dMIN(q,Reg(Nh))

▪ At each time step before we find tNN(q), one (and only one) of the nodes 

N1,N2,…,Nh is in the priority queue

▪ It follows that N can never become the 1st element of PQ ◼
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What if dMIN(q,Reg(N)) = rNN? 

Q: The optimality theorem says nothing about regions whose MinDist equals the 
NN distance. Why?

A: Because it cannot! 

Note that all such regions tie, thus their relative ordering in PQ is 
undetermined. The possible cases are:

1. The NN is in a node whose region has MinDist < rNN. 
In this case no node with dMIN(q,Reg(N)) = rNN will be read

2. The NN is in a node whose region has exactly MinDist = rNN. 
Now everything depends on how ties are managed in PQ. 
In the worst case, all nodes with dMIN(q,Reg(N)) = rNN will be read
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The general case (k  1)

◼ The algorithm is easily extended to the case k  1 by using:

◼ a data structure, which we call Res, where we maintain the k closest objects
found so far, together with their distances from q

◼ as "current search radius" the distance, rk-NN, of the current k-th NN of q, 
that is, the k-th element of Res

◼ The rest of the algorithm remains unchanged

ObjectID distance

t15 4

t24 8

t18 9

t4 12

t2 15

Res
k = 5

▪ No node with distance  15 

needs to be read
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The kNNOptimal Algorithm (case k  1)

Input: query point q, integer k  1, index tree with root node RN

Output: the k nearest neighbors of q, together with their distances

1. Initialize PQ with [ptr(RN),0]; 

2. for i=1 to k: Res[i] := [null,]; rk-NN := Res[k].dist;

3. while PQ ≠ :

4. [ptr(N), dMIN(q,Reg(N))] := DEQUEUE(PQ);

5. Read(N); 

6. if N is a leaf then: for each point t in N:

7. if d(q,t) < rk-NN then: {  remove the element in ResultList[k];

8. insert [t,d(q,t)] in ResultList;

9. rk-NN := Res[k].dist; UPDATE(PQ)}

10. else: for each child node Nc of N:

11. if dMIN(q,Reg(Nc)) < rk-NN then:

12. ENQUEUE(PQ,[ptr(Nc), dMIN(q,Reg(Nc))]);

13. return Res;

14. end.
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Distance browsing

◼ Now we know how to solve top-k selection queries using a multi-dimensional
index; but, what if our query is

SELECT *

FROM   USEDCARS

WHERE  Vehicle = ‘Audi/A4’

ORDER BY 0.8*Price + 0.2*Mileage

STOP AFTER 5;

and we have an R-tree on (Price,Mileage) built over ALL the cars?
◼ The k = 5 best matches returned by the index will not necessarily be Audi/A4

◼ In this case we can use a variant of kNNOptimal, which supports
the so-called "distance browsing" [HS99] or "incremental NN queries"

◼ For the case k = 1 the overall logic for using the index is:
◼ get from the index the 1st NN

◼ if it satisfies the query conditions (e.g., AUDI/A4) then stop, 
otherwise get the next (2nd) NN and do the same

◼ until 1 object is found that satisfies the query conditions

http://www-db.disi.unibo.it/courses/TBD/papers/HS99.pdf
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The next_NN algorithm

◼ In the queue PQ now we keep both tuples and nodes
◼ If an entry of PQ is tuple t then its distance d(q,t) is written dMIN(q,Reg(t))

◼ Note that no pruning is possible (since we don’t know how many objects have to 
be returned before stopping)

◼ Before making the first call to the algorithm we initialize PQ with [ptr(RN),0]

◼ When a tuple t becomes the 1st element of the queue the algorithm returns

Input: query point q, index tree with root node RN

Output: the next nearest neighbor of q, together with its distance

1. while PQ ≠ :

2. [ptr(Elem), dMIN(q,Reg(Elem))] := DEQUEUE(PQ); 

3. if Elem is a tuple t then: return t and its distance // no tuple can be better than t

4. else: if N is a leaf then: for each point t in N: ENQUEUE(PQ,[t,d(q,t)])

5. else: for each child node Nc of N: 

6. ENQUEUE(PQ,[ptr(Nc), dMIN(q,Reg(Nc))]);

7. end.
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Distance browsing: An example (1/2)

◼ q=(5,5), distance: L2
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Distance browsing: An example (2/2)

Action PQ

Read(RN) (N1,1) (N2,2)

Read(N1) (N2,2) (N3,5) (N4,5) (N5,9)

Read(N2) (N6,2) (N3,5) (N4,5) (N5,9) (N7,13)

Read(N6) (H,2) (N3,5) (N4,5) (N5,9) (I,10) (G,13) (N7,13)

Return(H,2) (N3,5) (N4,5) (N5,9) (I,10) (G,13) (N7,13)

Read(N3) (N4,5) (N5,9) (I,10) (F,10) (G,13) (D,13) (E,13) (N7,13)

Read(N4) (A,5) (N5,9) (I,10) (F,10) (G,13) (D,13) (E,13) (B,13) (N7,13) (C,18)

Return(A,5) (N5,9) (I,10) (F,10) (G,13) (D,13) (E,13) (B,13) (C,18)

Read(N5) … … …

…
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Indexes as iterators

◼ next_NN is just an implementation of the general next method for indexes 
that support incremental k-NN queries

◼ In practice, the specific query type (range, k-NN, incremental k-NN, etc.) is a 
parameter passed to the index with the open method, after that a simple 
next() suffices
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Top-k join queries

◼ In a top-k join query we have n > 1 input relations and a scoring function S 
defined on the result of the join, i.e.:

SELECT  <some attributes>

FROM R1,R2,…,Rn

WHERE <join and local conditions>

ORDER BY S(p1,p2,…pm) [DESC]

STOP AFTER k

where p1,p2,…pm are scoring criteria (the "preferences")
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Top-k join queries: examples

◼ The highest paid employee (compared to her dept budget):

SELECT E.*

FROM   EMP E, DEPT D

WHERE  E.DNO = D.DNO

ORDER BY E.Salary / D.Budget DESC

STOP AFTER 1

◼ The 2 cheapest restaurant-hotel combinations in the same Italian city

SELECT *

FROM   RESTAURANTS R, HOTELS H

WHERE  R.City = H.City

AND    R.Nation = ‘Italy’ 

AND    H.Nation = ‘Italy’

ORDER BY R.Price + H.Price

STOP AFTER 2
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Top-k selection queries as top-k join queries

◼ A (multidimensional) top-k selection query based on the scoring function
S(p1,p2,…,pm) can also be viewed as a particular case of join query in which
the input relation R is virtually "partitioned" into m parts, where the j-th
part Ri consists of the object id and of the attributes needed to compute pj

◼ E.g. If S is defined as:

S(t) = (t.Price + t.Mileage)/(t.Year - 1970)

we can "partition" USEDCARS as:
UC1(CarID,Price), UC2(CarID,Mileage), UC3(CarID,Year)

◼ A top-k selection query would be equivalent to:
SELECT *

FROM   USEDCARS UC1, USEDCARS UC2, USEDCARS UC3

WHERE  UC1.CarID = UC2.CarID 

AND    UC2.CarID = UC3.CarID

ORDER BY (UC1.Price + UC2.Mileage)/(UC3.Year-1970)

STOP AFTER 2

◼ In such cases the join is always 1-1 (PK-PK join)
◼ Other partitioned cases can occur, e.g., UC1(CarID,Price,Mileage), UC2(CarID,Year)
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Top-k 1-1 join queries

◼ The case in which all the joins are on a common key attribute(s) has been
the first to be largely investigated

◼ Its relevance is due to the following reasons:
◼ It is the simplest case to deal with

◼ Its solution provides the basis for the more general case

◼ It occurs in many practical cases

◼ The two scenarios in which 1-1 joins are worth considering are:
◼ For each preference pj there is an index able to retrieve tuples according

to that preference

◼ The "partitions" of R are real, e.g., R is distributed over several sites, 
each providing information only on part of the objects

◼ Historically, the 2nd scenario, sometimes called the "middleware scenario",  
is the one that motivated the study of top-k (1-1) join queries, and which led 
to the introduction of the first non-trivial algorithms
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◼ It is the simplest case to deal with

◼ Its solution provides the basis for the more general case

◼ It occurs in many practical cases

◼ The two scenarios in which 1-1 joins are worth considering are:
◼ For each preference pj there is an index able to retrieve tuples according

to that preference

◼ The "partitions" of R are real, e.g., R is distributed over several sites, 
each providing information only on part of the objects

◼ Historically, the 2nd scenario, sometimes called the "middleware scenario",  
is the one that motivated the study of top-k (1-1) join queries, and which led 
to the introduction of the first non-trivial algorithms



57.3

Top-k 1-1 join queries

◼ The case in which all the joins are on a common key attribute(s) has been
the first to be largely investigated

◼ Its relevance is due to the following reasons:
◼ It is the simplest case to deal with

◼ Its solution provides the basis for the more general case

◼ It occurs in many practical cases

◼ The two scenarios in which 1-1 joins are worth considering are:
◼ For each preference pj there is an index able to retrieve tuples according

to that preference
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is the one that motivated the study of top-k (1-1) join queries, and which led 
to the introduction of the first non-trivial algorithms



57.4

Top-k 1-1 join queries

◼ The case in which all the joins are on a common key attribute(s) has been
the first to be largely investigated

◼ Its relevance is due to the following reasons:
◼ It is the simplest case to deal with

◼ Its solution provides the basis for the more general case

◼ It occurs in many practical cases

◼ The two scenarios in which 1-1 joins are worth considering are:
◼ For each preference pj there is an index able to retrieve tuples according

to that preference

◼ The "partitions" of R are real, e.g., R is distributed over several sites, 
each providing information only on part of the objects

◼ Historically, the 2nd scenario, sometimes called the "middleware scenario",  
is the one that motivated the study of top-k (1-1) join queries, and which led 
to the introduction of the first non-trivial algorithms
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Index on Price
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Mileage
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Index on Mileage
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The middleware scenario

◼ The middleware scenario can be roughly described as follows:

1. We have a number of "data sources"

2. Our requests (queries) might involve several data sources at a time

3. The result of our queries is obtained by "integrating" in some way the 
results returned by the data sources

◼ These queries have been collectively called "middleware queries", since
they require the presence of a middleware whose role is to act as a 
"mediator" between the user/client and the data sources/servers
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A simplified example

◼ Assume you want to set up a web site that integrates the information of 2 
sources:
◼ The 1st source "exports" the following schema:

CarPrices(CarModel, Price)

◼ The schema exported by the 2nd source is:

CarSpec(Make, Model, FuelConsumption)

◼ After a phase of "reconciliation" 
CarModel = ‘Audi/A4’  (Make,Model) = (‘Audi’,‘A4’)

we can now support queries on both Price and FuelConsumption, e.g.:

find those cars whose consumption is less than 7 litres/100km 
and with a cost less than 15,000 €

How? 

1. send the (sub-)query on Price to the CarPrices source, 

2. send the query on fuel consumption to the CarSpec source, 

3. join the results
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The details of query execution

Mediator

Wrapper Wrapper

Source 1 Source 2

CarPrices(CarModel, Price) CarSpec(Make, Model, FuelConsumption)

SELECT * FROM MyCars

WHERE  Price < 15000

AND    FuelConsumption < 7

MyCars(Make, Model, Price, FuelConsumption)



60.2

The details of query execution

Mediator

Wrapper Wrapper

Source 1 Source 2

SELECT * FROM CarSpec

WHERE  FuelConsumption < 7

SELECT * FROM CarPrices

WHERE  Price < 15000

CarPrices(CarModel, Price) CarSpec(Make, Model, FuelConsumption)

SELECT * FROM MyCars

WHERE  Price < 15000

AND    FuelConsumption < 7

MyCars(Make, Model, Price, FuelConsumption)
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The details of query execution

Mediator

Wrapper Wrapper

Source 1 Source 2

SELECT * FROM CarSpec

WHERE  FuelConsumption < 7

SELECT * FROM CarPrices

WHERE  Price < 15000

CarPrices(CarModel, Price) CarSpec(Make, Model, FuelConsumption)

SELECT * FROM MyCars

WHERE  Price < 15000

AND    FuelConsumption < 7

MyCars(Make, Model, Price, FuelConsumption)

Make Model FuelCons

Toyota Yaris 6.5

Nissan Micra 6.2

CarModel Price

Toyota/Yaris 12

Citroen/C3 11



60.4

The details of query execution

Mediator

Wrapper Wrapper

Source 1 Source 2

SELECT * FROM CarSpec

WHERE  FuelConsumption < 7

SELECT * FROM CarPrices

WHERE  Price < 15000

CarPrices(CarModel, Price) CarSpec(Make, Model, FuelConsumption)

SELECT * FROM MyCars

WHERE  Price < 15000

AND    FuelConsumption < 7

MyCars(Make, Model, Price, FuelConsumption)

Make Model FuelCons

Toyota Yaris 6.5

Nissan Micra 6.2

Make Model Price FuelCons

Toyota Yaris 12 6.5

CarModel Price

Toyota/Yaris 12

Citroen/C3 11
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Another example

◼ We now want to build a site that integrates the information of (the sites of) 
m car dealers:
◼ Each car dealer site CDj can give us the following information:

CarDealerj(CarID, Make, Model, Price)

and our goal is to provide our users with the cheapest available cars, 
that is, to support queries like:

For each FIAT model, which is the cheapest offer?

How? 

1. send the same (sub-)query to the all the data sources, 

2. take the union of the results,

3. for each model, get the best offer and the corresponding dealer

For queries of this kind, the mediator is also often called
a "meta-broker" or "meta-search engine"
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Query execution (some details omitted)

Mediator

Wrapper Wrapper

Source 1 Source 2

CarDealer1(CarID, Make, Model, Price)

SELECT Model,min(Price) MP,Dealer

FROM   AllCars

WHERE  Make = ‘Fiat’

GROUP BY Model

AllCars(CarID, Make, Model, Price, Dealer)

CarDealer2(CarID, Make, Model, Price)
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Query execution (some details omitted)

Mediator

Wrapper Wrapper

Source 1 Source 2

CarDealer1(CarID, Make, Model, Price)

SELECT Model,min(Price) MP,Dealer

FROM   AllCars

WHERE  Make = ‘Fiat’

GROUP BY Model

AllCars(CarID, Make, Model, Price, Dealer)

SELECT Model, min(Price) MP

FROM   CarDealer1 

WHERE  Make = ‘Fiat’

GROUP BY Model 

SELECT Model, min(Price) MP

FROM   CarDealer2 

WHERE  Make = ‘Fiat’

GROUP BY Model 

CarDealer2(CarID, Make, Model, Price)



62.3

Query execution (some details omitted)

Mediator

Wrapper Wrapper

Source 1 Source 2

CarDealer1(CarID, Make, Model, Price)

SELECT Model,min(Price) MP,Dealer

FROM   AllCars

WHERE  Make = ‘Fiat’

GROUP BY Model

AllCars(CarID, Make, Model, Price, Dealer)

SELECT Model, min(Price) MP

FROM   CarDealer1 

WHERE  Make = ‘Fiat’

GROUP BY Model 

SELECT Model, min(Price) MP

FROM   CarDealer2 

WHERE  Make = ‘Fiat’

GROUP BY Model 

Model MP

Brava 8

Punto 11

Model MP

Brava 9

Duna 7

Punto 10

CarDealer2(CarID, Make, Model, Price)
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Query execution (some details omitted)

Mediator

Wrapper Wrapper

Source 1 Source 2

CarDealer1(CarID, Make, Model, Price)

SELECT Model,min(Price) MP,Dealer

FROM   AllCars

WHERE  Make = ‘Fiat’

GROUP BY Model

AllCars(CarID, Make, Model, Price, Dealer)

Model MP Dealer

Brava 8 D1

Duna 7 D2

Punto 10 D2

SELECT Model, min(Price) MP

FROM   CarDealer1 

WHERE  Make = ‘Fiat’

GROUP BY Model 

SELECT Model, min(Price) MP

FROM   CarDealer2 

WHERE  Make = ‘Fiat’

GROUP BY Model 

Model MP

Brava 8

Punto 11

Model MP

Brava 9

Duna 7

Punto 10

CarDealer2(CarID, Make, Model, Price)
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Top-k 1-1 join (middleware) queries

◼ "Top-k middleware query" is just another name for top-k 1-1 join query, 
appropriate when the data to be 1-1 joined are distributed

◼ Although the distributed and local scenario have different properties (e.g., 
communication costs, availability of sources, etc.), for both one can apply
the same principles (and algorithms) to compute the result of a top-k query

◼ In particular, in both scenarios we reason in terms of "inputs", which are 
"data sources" and "relations" in the distributed and local case, respectively

◼ For reasons that will be soon clear, the j-th input will be denoted Lj

◼ Also, in order to simplify the notation, we reason in terms of "objects" 
(rather than tuples) to be globally scored
◼ This is because it is fair to say that an object o belongs to two different

inputs, whereas it would be incorrect to say the same for a tuple
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Top-k 1-1 join queries

◼ The following assumptions are quite standard if one has to avoid reading all the 
inputs:

1) Each input Lj supports a sorted access (s.a.) interface:

getNextLj() → (OID,Attributes,pj)

Thus, Lj is a ranked list, which justifies its name (“L” stands for list)

A sorted access gets the id of the next best object,
its partial score pj, and possibly some attributes 
requested by the query

2) Each input Lj also supports a random access (r.a.) interface:

getScoreLj(OID) → pj

A random access gets the partial score 
of an object
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Other assumptions

3) The OID is “global”: a given object has the same identifier across the inputs

4) Each input consists of the same set of objects

◼ These two assumptions trivially holds if the top-k 1-1 join query is executed
locally, since the lists to be joined are just different rankings of a same relation

◼ 4: provided no ranking attribute has NULL values

◼ In a distributed environment, 3) rarely holds (e.g., see the previous example)
◼ The challenge is to "match" the descriptions provided by the data sources

(see, e.g., [WHT+99])

◼ If 4) does not hold, then some partial scores will be missing. The strategy to be 
taken depends on the specific scoring function

◼ E.g., if Budget is undefined then Salary/Budget is undefined as well

◼ In order to support sorted accesses, a possibility is to use next_NN

◼ For random accesses, a PK index is required

http://www-db.disi.unibo.it/courses/TBD/papers/WHT+99.pdf
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Top-k 1-1 join queries: example

◼ Aggregating reviews of restaurants

Name Score

Da Gino 9.0

Il desco 8.5

Al vecchio mulino 7.5

Le delizie del palato 7.5

La tavernetta 7.0

Acqua in bocca 6.5

Tutti a tavola! 6.0

Name Score

Al vecchio mulino 9.2

La tavernetta 9.0

Il desco 8.3

Da Gino 7.5

Tutti a tavola! 6.4

Le delizie del palato 5.5

Acqua in bocca 5.0

MangiarBene PaneeVino

SELECT *

FROM   MangiarBene MB, PaneeVino PV

WHERE  MB.Name = PV.Name

ORDER BY MB.Score + PV.Score DESC

STOP AFTER 1

Name
Global
Score

Il desco 16.8

Al vecchio mulino 16.7

Da Gino 16.5

La tavernetta 16.0

Le delizie del palato 13.0

Tutti a tavola! 12.4

Acqua in bocca 11.5

Note: the winner is never the best locally! 
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A homogeneous model for scoring functions

◼ In order to provide a unifying approach to the problem, we consider:

◼ A top-k 1-1 join query Q = (Q1,Q2,…,Qm)
◼ Qj is the sub-query sent to the j-th source/relation

◼ Each object o returned by the input Lj has an associated local/partial score 
pj(o), pj(o)  [0,1] and dependent on Qj
◼ For convenience, scores are normalized, with higher scores being better

◼ This can be easly relaxed; what matters is to know which is the best 
and the worst possible value of pj

◼ The hypercube [0,1]m is conveniently called the "score space"

◼ The point p(o) = (p1(o),p2(o),…,pm(o))  [0,1]m is the map of o into the 
score space

◼ The global/overall score S(o) of o is computed by means of a 
scoring function (s.f.) S that combines in some way the local scores of o:

S : [0,1]m →  S(o)  S(p(o)) = S(p1(o),p2(o),…,pm(o))
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The score space

◼ Consider the 2-dim attribute space A = (Price,Mileage)

◼ Let Q1 be the sub-query on Price, and Q2 the sub-query on Mileage

◼ We can set: p1(o) = 1 – o.Price/MaxP, p2(o) = 1 – o.Mileage/MaxM

◼ Let’s take MaxP = 50,000 and MaxM = 80,000

◼ Objects in A are mapped into the score space as in the figure on the right
◼ The relative order on each coordinate (local ranking) remains unchanged
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Some common scoring functions

SUM (AVG): used to equally weigh preferences

SUM(o)  SUM(p(o)) = p1(o) + p2(o) + … + pm(o)

WSUM (Weighted sum): to differently weigh the ranking attributes

WSUM(o)  WSUM(p(o)) = w1*p1(o) + w2*p2(o) + … + wm*pm(o)

MIN (Minimum): just considers the worst partial score

MIN(o)  MIN(p(o)) = min{p1(o),p2(o), …, pm(o)}

MAX (Maximum): just considers the best partial score

MAX(o)  MAX(p(o)) = max{p1(o),p2(o), …, pm(o)}

Remind: (even with MIN) we always want to 
retrieve the k objects with the highest global scores
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Equallly scored objects

◼ Similarly to iso-distance curves in an attribute space, we can define 
iso-score curves in the score space, in order to highlight the sets of points 
with a same global score
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The simplest case: MAX

◼ We are now ready to ask "the big question":

◼ For the particular case S  MAX the solution is really simple [Fag96]:

How can we efficiently compute the result of a 
top-k 1-1 join query using a scoring function S? 

You can use my algorithm B0, 
which just retrieves the best k objects 

from each source, that’s all!

Ronald Fagin

http://www-db.disi.unibo.it/courses/TBD/papers/Fag96.pdf
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The simplest case: MAX

◼ We are now ready to ask "the big question":

◼ For the particular case S  MAX the solution is really simple [Fag96]:

How can we efficiently compute the result of a 
top-k 1-1 join query using a scoring function S? 

Beware! B0 only works for MAX, 
other scoring functions require 

smarter, and more costly, algorithms

You can use my algorithm B0, 
which just retrieves the best k objects 

from each source, that’s all!

Ronald Fagin

http://www-db.disi.unibo.it/courses/TBD/papers/Fag96.pdf
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The simplest case: MAX

◼ We are now ready to ask "the big question":

◼ For the particular case S  MAX the solution is really simple [Fag96]:

How can we efficiently compute the result of a 
top-k 1-1 join query using a scoring function S? 

Beware! B0 only works for MAX, 
other scoring functions require 

smarter, and more costly, algorithms

You can use my algorithm B0, 
which just retrieves the best k objects 

from each source, that’s all!

Ronald Fagin

http://www-db.disi.unibo.it/courses/TBD/papers/Fag96.pdf


72

The B0 algorithm

Input: ranked lists Lj (j=1,…,m), integer k  1

Output: the top-k objects according to the MAX scoring function

1. B := ; // B is a main-memory buffer 

2. for j = 1 to m:

3. Obj(j) := ; // the set of objects "seen" on Lj

4. for i = 1 to k: // get the best k objects from each list 

5. t := getNextLj();

6. Obj(j) := Obj(j)  {t.OID};  

7. if t.OID was not retrieved from other lists then: INSERT(B,t)  // adds t to the buffer

8. else: join t with the entry in B having the same OID;

9. for each object o  Obj := j Obj(j):    // for each object with at least one partial score…

10. MAX(o) := maxj{pj(o): pj(o) is defined};  // …compute MAX using the available scores

11. return the k objects with maximum score;

12. end.

◼ Algorithm B0 just performs k sorted accesses on each list (k s.a. "rounds"), and 
then computes the result without the need to obtain missing partial scores
(i.e., no random accesses are executed)
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B0 : examples

OID p1

o7 0.7

o3 0.65

o4 0.6

o2 0.5

OID p2

o2 0.9

o3 0.6

o7 0.4

o4 0.2

OID p3

o7 1.0

o2 0.8

o4 0.75

o3 0.7

k = 2

Name Score

Da Gino 9.0

Il desco 8.5

Al vecchio mulino 7.5

Le delizie del palato 7.5

La tavernetta 7.0

Acqua in bocca 6.5

Tutti a tavola! 6.0

Name Score

Al vecchio mulino 9.2

La tavernetta 9.0

Il desco 8.3

Da Gino 7.5

Tutti a tavola! 6.4

Le delizie del palato 5.5

Acqua in bocca 5.0

MangiarBene PaneeVino

k = 3
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B0 : examples

OID p1

o7 0.7

o3 0.65

o4 0.6

o2 0.5

OID p2

o2 0.9

o3 0.6

o7 0.4

o4 0.2

OID p3

o7 1.0

o2 0.8

o4 0.75

o3 0.7

k = 2

Name Score

Da Gino 9.0

Il desco 8.5

Al vecchio mulino 7.5

Le delizie del palato 7.5

La tavernetta 7.0

Acqua in bocca 6.5

Tutti a tavola! 6.0

Name Score

Al vecchio mulino 9.2

La tavernetta 9.0

Il desco 8.3

Da Gino 7.5

Tutti a tavola! 6.4

Le delizie del palato 5.5

Acqua in bocca 5.0

MangiarBene PaneeVino

k = 3
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B0 : examples

OID p1

o7 0.7

o3 0.65

o4 0.6

o2 0.5

OID p2

o2 0.9

o3 0.6

o7 0.4

o4 0.2

OID p3

o7 1.0

o2 0.8

o4 0.75

o3 0.7

k = 2

Name Score

Da Gino 9.0

Il desco 8.5

Al vecchio mulino 7.5

Le delizie del palato 7.5

La tavernetta 7.0

Acqua in bocca 6.5

Tutti a tavola! 6.0

Name Score

Al vecchio mulino 9.2

La tavernetta 9.0

Il desco 8.3

Da Gino 7.5

Tutti a tavola! 6.4

Le delizie del palato 5.5

Acqua in bocca 5.0

MangiarBene PaneeVino

k = 3
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B0 : examples

OID p1

o7 0.7

o3 0.65

o4 0.6

o2 0.5

OID p2

o2 0.9

o3 0.6

o7 0.4

o4 0.2

OID p3

o7 1.0

o2 0.8

o4 0.75

o3 0.7

k = 2
OID S

o7 1.0

o2 0.9

o3 0.65

Name Score

Da Gino 9.0

Il desco 8.5

Al vecchio mulino 7.5

Le delizie del palato 7.5

La tavernetta 7.0

Acqua in bocca 6.5

Tutti a tavola! 6.0

Name Score

Al vecchio mulino 9.2

La tavernetta 9.0

Il desco 8.3

Da Gino 7.5

Tutti a tavola! 6.4

Le delizie del palato 5.5

Acqua in bocca 5.0

MangiarBene PaneeVino

k = 3
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B0 : examples

OID p1

o7 0.7

o3 0.65

o4 0.6

o2 0.5

OID p2

o2 0.9

o3 0.6

o7 0.4

o4 0.2

OID p3

o7 1.0

o2 0.8

o4 0.75

o3 0.7

k = 2
OID S

o7 1.0

o2 0.9

o3 0.65

Name Score

Da Gino 9.0

Il desco 8.5

Al vecchio mulino 7.5

Le delizie del palato 7.5

La tavernetta 7.0

Acqua in bocca 6.5

Tutti a tavola! 6.0

Name Score

Al vecchio mulino 9.2

La tavernetta 9.0

Il desco 8.3

Da Gino 7.5

Tutti a tavola! 6.4

Le delizie del palato 5.5

Acqua in bocca 5.0

MangiarBene PaneeVino

k = 3
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B0 : examples
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o7 1.0

o2 0.8

o4 0.75

o3 0.7

k = 2
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o7 1.0
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Da Gino 9.0

Il desco 8.5

Al vecchio mulino 7.5

Le delizie del palato 7.5

La tavernetta 7.0

Acqua in bocca 6.5

Tutti a tavola! 6.0
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Al vecchio mulino 9.2

La tavernetta 9.0

Il desco 8.3

Da Gino 7.5

Tutti a tavola! 6.4

Le delizie del palato 5.5

Acqua in bocca 5.0

MangiarBene PaneeVino

k = 3
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B0 : examples

OID p1

o7 0.7

o3 0.65

o4 0.6

o2 0.5
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o3 0.6
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o4 0.2
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o4 0.75
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Da Gino 9.0

Il desco 8.5
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La tavernetta 7.0
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Tutti a tavola! 6.0

Name Score

Al vecchio mulino 9.2

La tavernetta 9.0

Il desco 8.3

Da Gino 7.5

Tutti a tavola! 6.4

Le delizie del palato 5.5

Acqua in bocca 5.0

MangiarBene PaneeVino

k = 3
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B0 : examples

OID p1

o7 0.7
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MangiarBene PaneeVino

k = 3
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B0 : examples

OID p1

o7 0.7
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B0 : examples

OID p1

o7 0.7

o3 0.65

o4 0.6

o2 0.5
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o3 0.7
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o2 0.9
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Al vecchio mulino 7.5

Le delizie del palato 7.5

La tavernetta 7.0

Acqua in bocca 6.5

Tutti a tavola! 6.0

Name Score

Al vecchio mulino 9.2

La tavernetta 9.0

Il desco 8.3

Da Gino 7.5

Tutti a tavola! 6.4

Le delizie del palato 5.5

Acqua in bocca 5.0

MangiarBene PaneeVino

k = 3

Name S

Al vecchio mulino 9.2

Da Gino 9.0

La tavernetta 9.0

Il desco 8.5



Why B0 works: graphical intuition

◼ By hypothesis, in the figure below at least k objects o have S(o)  0.8
◼ This holds because at least one sorted access scan (on L2, in the figure) 

stops after retrieving at the k-th round an object with local score = 0.8

◼ An object like o’, that has not been retrieved by any sorted access scan 
(thus o’  Obj), cannot have a global score higher than 0.8!
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How B0 works on the restaurants example

◼ After 3 s.a. rounds it is guaranteed that there are at least 3 restaurants o 
with S(o)  8.3

◼ A restaurant like o’, that has not been retrieved by any sorted access scan 
(thus o’  Obj), cannot have a global score higher than 8.3
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MangiarBene
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B0: A proof of correctness

◼ Let Res be the result of B0 (Res  Obj)

◼ The need for a formal proof of correctness is motivated by the following:

if o  Obj – Res, then S(o) is not guaranteed to be correct

(e.g., see o3 in the 1st example)

◼ Thus, we have to show that this does not influence the result

◼ On the other hand, if o  Obj we have just shown that o cannot be better 
than any object in Res

◼ We split the proof in two parts:
◼ We first show that  if o  Res, then S(o) is correct

◼ We then show that if o  Obj - Res, then, even if its global score is 
not correct, the algorithm correctly determines the top-k objects

Theorem:

The B0 algorithm correctly determines the top-k objects and their global scores
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Proof (1): if o  Res, then S(o) is correct

◼ Let SB0(o) be the global score, as computed by B0, for an object o  Obj

◼ By def. of MAX, it is: SB0(o)  S(o) (e.g., SB0(o3) = 0.65  S(o3) = 0.7) 

◼ Let o1  Res and assume by contradiction that SB0(o1) < S(o1)

◼ This is to say that there exists Lj such that (s.t.): o1  Obj(j) and S(o1) = pj(o1)

◼ In turn this implies that there are k objects o  Obj(j) s.t.
SB0(o1) < S(o1) = pj(o1)  pj(o)  SB0(o)  S(o) o  Obj(j)

◼ Thus o1 cannot belong to Res, a contradiction ◼

OID pj

…. ….

o pj(o)  SB0(o)  S(o)

… …

… …

o1 SB0(o1) < S(o1) = pj(o1)

Obj(j) contains k objects

?? Impossible if o1  Res
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Proof (2): Res contains the top-k objects

◼ Consider an object, say o1, s.t. o1  Obj – Res

◼ If SB0(o1) = S(o1) then there is nothing to demonstrate ☺

◼ Then, assume that at least one partial score of o1, pj(o1), is not available, and 
that SB0(o1) < S(o1) = pj(o1). Then 

SB0(o1) < S(o1) = pj(o1)  pj(o)  SB0(o)  S(o) o  Obj(j)

◼ Since each object in Res has a global score at least equal to the lowest score 
seen on Lj, it follows that it is impossible to have S(o1) > S(o) if o  Res ◼

OID pj

…. ….

o pj(o)  SB0(o)  S(o)

… …

… …

o1 SB0(o1) < S(o1) = pj(o1)

Obj(j) contains k objects

Impossible to have S(o1) > S(o), o  Res
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Less than k rounds?

◼ An interesting question is: can we compute the correct result using less than 
k rounds of sorted accesses?

Name Score

Da Gino 9.0

Il desco 8.5

Al vecchio mulino 7.5

… …

Name Score

Al vecchio mulino 9.2

La tavernetta 9.0

Il desco 8.3

… …

MangiarBene PaneeVino

k=1: 1 round is required
◼ Althoug some s.a.’s can be saved if we fetch 

an object with maximum score (10, in the example)

k=2: 2 rounds are required
◼ We can save 1 s.a. if we first access MangiarBene 

k=3: Here we can stop after only 2 rounds!

k=4: 3 rounds are enough!

Which is the general rule?

Name S

Al vecchio mulino 9.2

Da Gino 9.0

La tavernetta 9.0

Il desco 8.5
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Less than k rounds? Yes, sometimes

◼ For each list Lj, let pj denote the lowest score seen so far

◼ Let Res denote the current set of top-k objects, ordered by their current MAX 
value; thus, Res[k].score is the lowest of such global scores

◼ The following stopping condition is always verified after k s.a. rounds, but it 
might also hold earlier

Theorem:

An algorithm for top-k 1-1 join queries using the MAX scoring function can be 
stopped iff Res[k].score  maxj{pj}

Proof: 

(if) Since each Lj is ordered by non-increasing values of pj, no unseen object on Lj 
can have a partial score higher than pj. Thus, no unseen object can have a score 
higher than maxj{pj}. It follows that Res is correct and that the scores of the 
objects in Res are correct as well.

(only if) Assume that the algorithm stops when Res[k].score < maxj{pj}. Then, a 
list Lj, with pj > Res[k].score might contain an object o s.t. pj(o) > Res[k].score. ◼
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Towards an optimal algorithm

◼ Besides minimizing the number of rounds, the theorem is also the key to 
minimize the overall number of sorted accesses

◼ To this end, we do not insist in executing s.a.’s in a round-robin fashion
◼ Thus, we may also have situations like this:

OID p1

o9 0.7

… …

OID p2

o2 0.9

o3 0.6

o5 0.4

… …

OID p3

o1 0.8

o2 0.8

… …



82

The MaxOptimal algorithm

◼ The new algorithm, called MaxOptimal, is essentially based on the same
principles of kNNOptimal (!?)
◼ At each step it performs a sorted access on the "most promising" list Lj* 

for which pj* is maximum: j* = argmaxj{pj}

◼ It only keeps in memory the k best objects found so far

Input: ranked lists Lj (j=1,…,m), integer k  1

Output: the top-k objects according to the MAX scoring function

1. for i=1 to k: Res[i] := [null,0]; // entry of type: [OID,score] (+ other attr.’s as needed)

2. for j = 1 to m: pj = 1; // the best possible score on Lj

3. while Res[k].score < maxj{pj}:

4. j* = argmaxj{pj}; t := getNextLj*(); // get the next best object from list Lj*

5. if t.pj* > Res[k].score then:

6. if t.OID  Res.OID then: update the entry in Res having the same OID

7. else: {remove the object in Res[k]; insert [t.OID,t.pj*] in Res};

8. return Res;

9. end.
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MaxOptimal: example

OID p1

o1 0.95

o7 0.85

o4 0.6

… …

OID p2

o2 0.8

o3 0.7

… …

OID p3

o7 0.6

… …

k = 4

L1 L2 L3
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MaxOptimal: example

OID p1

o1 0.95

o7 0.85

o4 0.6

… …

OID p2

o2 0.8

o3 0.7

… …

OID p3

o7 0.6

… …

k = 4 OID Score (S)

o1 0.95

o2 0.8

o7 0.6

--- 0

after the
1st round

ResL1 L2 L3

0 < 0.95



83.3

MaxOptimal: example

OID p1

o1 0.95

o7 0.85

o4 0.6

… …

OID p2

o2 0.8

o3 0.7

… …

OID p3

o7 0.6

… …

k = 4 OID Score (S)

o1 0.95

o2 0.8

o7 0.6

--- 0

after the
1st round

OID Score (S)

o1 0.95

o7 0.85

o2 0.8

--- 0

ResL1 L2 L3

0 < 0.95

0 < 0.85
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MaxOptimal: example

OID p1

o1 0.95

o7 0.85

o4 0.6

… …

OID p2

o2 0.8

o3 0.7

… …

OID p3

o7 0.6

… …

k = 4 OID Score (S)

o1 0.95

o2 0.8

o7 0.6

--- 0

after the
1st round

OID Score (S)

o1 0.95

o7 0.85

o2 0.8

--- 0

OID Score (S)

o1 0.95

o7 0.85

o2 0.8

o4 0.6

ResL1 L2 L3

0 < 0.95

0 < 0.85 0.6 < 0.8
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MaxOptimal: example

OID p1

o1 0.95

o7 0.85

o4 0.6

… …

OID p2

o2 0.8

o3 0.7

… …

OID p3

o7 0.6

… …

k = 4 OID Score (S)

o1 0.95

o2 0.8

o7 0.6

--- 0

after the
1st round

OID Score (S)

o1 0.95

o7 0.85

o2 0.8

--- 0

OID Score (S)

o1 0.95

o7 0.85

o2 0.8

o4 0.6

OID Score (S)

o1 0.95

o7 0.85

o2 0.8

o3 0.7

ResL1 L2 L3

0 < 0.95

0 < 0.85 0.6 < 0.8 0.7  0.7
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The optimality of MaxOptimal

◼ The reason why MaxOptimal minimizes the number of s.a.’s is similar to the 
one that applies to kNNOptimal

Theorem:
Let MAXk be the k-th highest global score in the dataset. Then, the MaxOptimal 

algorithm for top-k 1-1 join queries never performs a sorted access on a list Lj 
for which it is pj < MAXk

Proof: By contradiction, assume that MaxOptimal performs a s.a. on list Lj*, with 
pj* < MAXk. For this it has to be pj* = maxj{pj}, from which it is derived MAXk > 
pj, for each j. Before performing this s.a. it is Res[k].score < MAXk, otherwise the 
algorithm would halt. But this implies that there exists an unseen object whose 
global score is MAXk, which is impossible. ◼
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Why B0 doesn’t work for other scoring f.’s

◼ Let S  MIN and k = 1

OID p1

o7 0.9

o3 0.65

o2 0.6

o1 0.5

o4 0.4

OID p2

o2 0.95

o3 0.7

o4 0.6

o1 0.5

o7 0.5

OID p3

o7 1.0

o2 0.8

o4 0.75

o3 0.7

o1 0.6

OID S

o2 0.95

o7 0.9

WRONG!!

▪ What if we consider ALL the partial scores of the objects in Obj (Obj = {o2,o7} 
in the figure)?

▪ After performing the necessary random accesses:

getScoreL1(o2), getScoreL3(o2), getScoreL2(o7)

we get: OID S

o2 0.6

o7 0.5

STILL WRONG!!? 
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Why B0 doesn’t work: graphical intuition
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◼ Let S  MIN and k = 1

◼ When the sorted accesses terminate, we don’t have any lower bound on 
the global scores of the retrieved objects (i.e., it might also be S(o) = 0)

◼ An object, like o’, that has not been retrieved by any sorted access scan can 
now be the winner!

◼ Note that, in this case, o’ would be the best match even for S  SUM

Sorted access scan on L1

Sorted access scan on L2

Retrieved objects are
somewhere in this region

o’

o2

o1
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The FA algorithm: monotone scoring f.’s
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◼ The FA (or A0) algorithm [Fag96] can be used to solve top-k 1-1 join queries 
with any monotone scoring function S:

◼ FA exploits the monotonicity property 
in order to understand 
when sorted accesses can be stopped

No object in this closed (hyper-)rectangle
can be better than o!

o

Monotone scoring function:

▪ An m-ary scoring function S is monotone if

x1  y1, x2  y2, …, xm  ym  S(x1,x2,…,xm)  S(y1,y2,…,ym)
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The FA algorithm

Input: ranked lists Lj (j=1,…,m), integer k  1, monotone scoring function S

Output: the top-k objects according to S

// 1st phase: sorted accesses

1. for j = 1 to m: Obj(j) := ; B := ; M := ; 

2. while |M| < k:

4. for j = 1 to m:

5. t := getNextLj(); Obj(j) := Obj(j)  {t.OID};  // get the next best object from list Lj

6. if t.OID was not retrieved from other lists then: INSERT(B,t)

7. else: join t with the entry in B having the same OID;

8. M := j Obj(j); // the set of objects seen on all the m lists

// 2nd phase: random accesses

9. for each object o  Obj := j Obj(j): // for each object with at least one partial score…

perform random accesses to retrieve the missing partial scores for o;

// 3rd phase: score computation

10. for each object o  Obj: compute S(o);

11. return the k objects with maximum score;

12. end.
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How FA works

◼ Let’s take k = 1. We apply FA to the following data:
and after the sorted 
accesses we obtain:

OID p1

o7 0.9

o3 0.65

o2 0.6

o1 0.5

o4 0.4

OID p2

o2 0.95

o3 0.7

o4 0.6

o1 0.5

o7 0.5

OID p3

o7 1.0

o2 0.8

o4 0.75

o3 0.7

o1 0.6
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How FA works

◼ Let’s take k = 1. We apply FA to the following data:
and after the sorted 
accesses we obtain:

OID p1

o7 0.9

o3 0.65

o2 0.6

o1 0.5

o4 0.4

OID p2

o2 0.95

o3 0.7

o4 0.6

o1 0.5

o7 0.5

OID p3

o7 1.0

o2 0.8

o4 0.75

o3 0.7

o1 0.6

M = {o2}
Obj = {o2,o3,o4,o7}
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How FA works

◼ Let’s take k = 1. We apply FA to the following data:
and after the sorted 
accesses we obtain:

OID p1

o7 0.9

o3 0.65

o2 0.6

o1 0.5

o4 0.4

OID p2

o2 0.95

o3 0.7

o4 0.6

o1 0.5

o7 0.5

OID p3

o7 1.0

o2 0.8

o4 0.75

o3 0.7

o1 0.6

RIGHT!!

▪ After performing the needed random accesses we get:

OID S

o3 0.65

o2 0.6

o7 0.5

o4 0.4

M = {o2}
Obj = {o2,o3,o4,o7}

S  MIN
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How FA works

◼ Let’s take k = 1. We apply FA to the following data:
and after the sorted 
accesses we obtain:

OID p1

o7 0.9

o3 0.65

o2 0.6

o1 0.5

o4 0.4

OID p2

o2 0.95

o3 0.7

o4 0.6

o1 0.5

o7 0.5

OID p3

o7 1.0

o2 0.8

o4 0.75

o3 0.7

o1 0.6

RIGHT!!

▪ After performing the needed random accesses we get:

OID S

o3 0.65

o2 0.6

o7 0.5

o4 0.4

M = {o2}
Obj = {o2,o3,o4,o7}

S  MIN

RIGHT!!

OID S

o7 2.4

o2 2.35

o3 2.05

o4 1.75

S  SUM☺
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Why FA is correct: formal and intuitive

Theorem:
The FA algorithm is correct for any monotone scoring function S

Proof: Let Res be the set of objects returned by FA. It is sufficient to show that 
if o’  Obj, then o’ cannot be better than any object o  Res.

Let o be any object in Res. Then, there is at least one object o’’  M (possibly 
coincident with o itself) such that S(o’’)  S(o), otherwise o would not be in Res.

Since o’  Obj, for each Lj it is pj(o’)  pj(o’’), and from the assumption of 
monotonicity of S it is S(o’)  S(o’’); it follows that S(o’)  S(o) ◼
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…and each of them cannot be worse 
than a point in this region

FA stops when this region
contains at least k points…
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FA: performance

◼ When the sub-queries are independent (i.e., each local ranking is independent 
of the others) it can be proved that the cost of FA (no. of sorted and random 
accesses) for a DB of N objects is, with arbitrarily high probability, and 
assuming m constant:

( )( )1/m/m1-m kNO

Proof intuition: Since FA executes the s.a.’s using a round-robin strategy, on each list 
it executes, say, X s.a.’s. The expected size of the intersection of m random 
subsets, each of cardinality X, taken from a set with N elements is 

By equating to k and solving it is obtained:

The result follows after observing that the number of s.a.’s is m*X and the number 
of r.a.’s is at most (m*X-m*k)*(m-1) ◼

1m

mm

N

X

N

X
N

−
=










1/m1)/m(m kNX −=
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Limits of FA 

◼ The major drawback of the algorithm is that it does not exploit at all the 
specific scoring function S

◼ In particular, since S is used only in the third step (when global scores are 
computed), for a given DB the s.a.+r.a. cost of FA is independent of S!

◼ Further, the memory requirements of FA can become prohibitive (since FA 
has to buffer all the objects accessed through sorted access)

◼ Although some amelioration is possible (e.g., interleaving random accesses 
and score computation, which might save some r.a.), a major improvement 
is possible only by changing the stopping condition, which in FA is based 
only on the local rankings of the objects
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The TA algorithm

◼ TA (Threshold Algorithm) [FLN01,FLN03] difffers from FA in that:
◼ it interleaves sorted and random accesses

◼ it is based on a numerical stopping rule

◼ In particular, TA uses a threshold T, which is an upper bound to the scores
of all unseen objects

Input: ranked lists Lj (j=1,…,m), integer k  1, monotone scoring function S

Output: the top-k objects according to S

1. for i = 1 to k: Res[i] := [null,0]; 

2. for j = 1 to m: pj := 1; 

3. while Res[k].score < T := S(p1,p2,…,pm): // T is the “threshold”

4. for j = 1 to m:

5. t := getNextLj(); o := t.OID; 

6. perform random accesses to retrieve the missing partial scores for o;

7. if S(o) := S(p1(o),…,pm(o)) > Res[k].score then:

8. {remove the object in Res[k]; insert [o,S(o)] in Res}; 

9. return Res;

10. end.

http://www-db.disi.unibo.it/courses/TBD/papers/FLN03.pdf
https://en.wikipedia.org/wiki/G%C3%B6del_Prize
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Why TA is correct: formal and intuitive

Theorem:
The TA algorithm is correct for any monotone scoring function S

Proof: Consider an object o’ that has not been seen under sorted access. Thus, for 
each j it is pj(o’)  pj. Due to the monotonicity of S this implies S(o’)  T. 

By definition of Res, for each object o  Res it is S(o)  T, thus S(o’)  S(o) ◼
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…and no object here
can be better than T!

TA stops when this region
contains k points 

at least as good as T…

T = S(p1,p2)
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How TA works

◼ Let’s take S  MIN and k = 1

OID p1

o7 0.9

o3 0.65

o2 0.6

o1 0.5

o4 0.4

OID p2

o2 0.95

o3 0.7

o4 0.6

o1 0.5

o7 0.5

OID p3

o7 1.0

o2 0.8

o4 0.75

o3 0.7

o1 0.6

OID p1

o7 0.9

o3 0.65

o2 0.6

o1 0.5

o4 0.4

OID p2

o2 0.95

o3 0.7

o4 0.6

o1 0.5

o7 0.5

OID p3

o7 1.0

o2 0.8

o4 0.75

o3 0.7

o1 0.6
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How TA works

◼ Let’s take S  MIN and k = 1

OID p1

o7 0.9

o3 0.65

o2 0.6

o1 0.5

o4 0.4

OID p2

o2 0.95

o3 0.7

o4 0.6

o1 0.5

o7 0.5

OID p3

o7 1.0

o2 0.8

o4 0.75

o3 0.7

o1 0.6

S(o2) = 0.6. T = 0.9

OID p1

o7 0.9

o3 0.65

o2 0.6

o1 0.5

o4 0.4

OID p2

o2 0.95

o3 0.7

o4 0.6

o1 0.5

o7 0.5

OID p3

o7 1.0

o2 0.8

o4 0.75

o3 0.7

o1 0.6
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How TA works

◼ Let’s take S  MIN and k = 1

OID p1

o7 0.9

o3 0.65

o2 0.6

o1 0.5

o4 0.4

OID p2

o2 0.95

o3 0.7

o4 0.6

o1 0.5

o7 0.5

OID p3

o7 1.0

o2 0.8

o4 0.75

o3 0.7

o1 0.6

S(o2) = 0.6. T = 0.9

S(o3) = 0.65. T = 0.65

OID p1

o7 0.9

o3 0.65

o2 0.6

o1 0.5

o4 0.4

OID p2

o2 0.95

o3 0.7

o4 0.6

o1 0.5

o7 0.5

OID p3

o7 1.0

o2 0.8

o4 0.75

o3 0.7

o1 0.6
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How TA works

◼ Let’s take S  MIN and k = 1

OID p1

o7 0.9

o3 0.65

o2 0.6

o1 0.5

o4 0.4

OID p2

o2 0.95

o3 0.7

o4 0.6

o1 0.5

o7 0.5

OID p3

o7 1.0

o2 0.8

o4 0.75

o3 0.7

o1 0.6

S(o2) = 0.6. T = 0.9

S(o3) = 0.65. T = 0.65

▪ Let’s take S  SUM and k = 2

OID p1

o7 0.9

o3 0.65

o2 0.6

o1 0.5

o4 0.4

OID p2

o2 0.95

o3 0.7

o4 0.6

o1 0.5

o7 0.5

OID p3

o7 1.0

o2 0.8

o4 0.75

o3 0.7

o1 0.6
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How TA works

◼ Let’s take S  MIN and k = 1

OID p1

o7 0.9

o3 0.65

o2 0.6

o1 0.5

o4 0.4

OID p2

o2 0.95

o3 0.7

o4 0.6

o1 0.5

o7 0.5

OID p3

o7 1.0

o2 0.8

o4 0.75

o3 0.7

o1 0.6

S(o2) = 0.6. T = 0.9

S(o3) = 0.65. T = 0.65

▪ Let’s take S  SUM and k = 2

OID p1

o7 0.9

o3 0.65

o2 0.6

o1 0.5

o4 0.4

OID p2

o2 0.95

o3 0.7

o4 0.6

o1 0.5

o7 0.5

OID p3

o7 1.0

o2 0.8

o4 0.75

o3 0.7

o1 0.6

S(o7) = 2.4; S(o2) = 2.35. T = 2.85
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How TA works

◼ Let’s take S  MIN and k = 1

OID p1

o7 0.9

o3 0.65

o2 0.6

o1 0.5

o4 0.4

OID p2

o2 0.95

o3 0.7

o4 0.6

o1 0.5

o7 0.5

OID p3

o7 1.0

o2 0.8

o4 0.75

o3 0.7

o1 0.6

S(o2) = 0.6. T = 0.9

S(o3) = 0.65. T = 0.65

▪ Let’s take S  SUM and k = 2

OID p1

o7 0.9

o3 0.65

o2 0.6

o1 0.5

o4 0.4

OID p2

o2 0.95

o3 0.7

o4 0.6

o1 0.5

o7 0.5

OID p3

o7 1.0

o2 0.8

o4 0.75

o3 0.7

o1 0.6

S(o7) = 2.4; S(o2) = 2.35. T = 2.85

S(o7) = 2.4; S(o2) = 2.35. T = 2.15
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The geometric view

◼ Let’s take S  SUM and k = 2
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The geometric view

◼ Let’s take S  SUM and k = 2
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The geometric view

◼ Let’s take S  SUM and k = 2
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The geometric view

◼ Let’s take S  SUM and k = 2
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The geometric view

◼ Let’s take S  SUM and k = 2
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The geometric view

◼ Let’s take S  SUM and k = 2
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The geometric view

◼ Let’s take S  SUM and k = 2
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The geometric view

◼ Let’s take S  SUM and k = 2
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The geometric view

◼ Let’s take S  SUM and k = 2
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The geometric view

◼ Let’s take S  SUM and k = 2
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The geometric view

◼ Let’s take S  SUM and k = 2
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The geometric view

◼ Let’s take S  SUM and k = 2
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The geometric view

◼ Let’s take S  SUM and k = 2
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The geometric view

◼ Let’s take S  SUM and k = 2
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Performance of TA: Cost model

◼ In general, TA performs much better than FA, since it can "adapt" to the 
specific scoring function S

◼ In order to characterize the performance of TA, we consider the so-called
"middleware" (or "access") cost: cost = SA*cSA + RA*cRA, where:

◼ SA (RA) is the total number of sorted (random) accesses

◼ cSA (cRA) is the unitary (base) cost of a sorted (random) access

◼ In the basic setting, it is cSA = cRA (=1, for simplicity)

◼ In other cases, base costs may widely differ
◼ E.g. for web sources it is usually the case cRA > (>>) cSA, with the limit

case cRA =  in which r.a.’s are impossible

◼ On the other hand, some sources might not be accessible through sorted
access, in which case it is cSA =  (for instance, we do not have an index to 
process pj)
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Performance of TA: Instance optimality

◼ A fundamental concept needed to understand in which sense "TA performs
well" is that of

◼ If A is instance-optimal, then any algorithm can improve on the cost of A by 
only a constant factor c, which is therefore called the optimality ratio of A

◼ Observe that instance optimality is a much stronger notion than optimality in 
the average or worst case

◼ E.g., binary search is optimal in the worst case, but it is not instance-
optimal

Instance optimality:

▪ Given a class of algorithms A and a class D of DB’s (inputs of the 
algorithms), an algorithm A  A is instance-optimal over A and D, for a 
given cost measure, if for every B  A and every DB  D it is

cost(A,DB) = O(cost(B,DB))

▪ This is to say that there are constants c and c’ such that:

cost(A,DB)  c*cost(B,DB) + c’
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Performance of TA: Main fact

◼ TA is instance-optimal over all DB’s and over all algorithms that do not make
"wild guesses", and its optimality ratio is m when cRA= 0

◼ Note that algorithms making wild guesses are only of theoretical interest

An algorithm A makes wild guesses if it makes a random access for object o 
without having seen before o under sorted access

Proof: Assume TA stops after having executed X s.a. rounds (at "depth X"), thus 
m*X s.a.’s. Consider any correct algorithm B and assume that, on each list, B 
executes strictly less than X s.a.’s. Thus, on list Lj it reaches Depth(B,j) < X. 

Let MaxDepth(B) = maxj{Depth(B,j)}. Consider now executing TA for 
MaxDepth(B) rounds. Since these include all the s.a.’s (and corresponding r.a.’s) 
done by B, and B is assumed to be correct, then TA could halt at depth
MaxDepth(B) < X, a contradiction. It follows that any correct algorithm B has to 
have MaxDepth(B)  X, thus its cost is  X. Thus, for each DB it is:

cost(TA,DB) = m*X  m*cost(B,DB) ◼
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Adapting to scenarios with different costs

◼ When cRA> 0 (the real case) the cost of TA halting at depth X is at most

cost(TA,DB) = m*X*cSA + m*X*(m-1)*cRA

since in the worst case TA retrieves m*X distinct objects, and for each of 
them executes (m-1) random accesses

◼ As seen, any other algorithm B will pay at least a cost

cost(B,DB)  X*cSA

◼ Thus, the optimality ratio is now:

◼ The above is quite bad when cRA > (>>) cSA, since the cost of random 
accesses will prevail
◼ E.g., with cRA/cSA = 10, and m = 3, the optimality ratio is 63

SA
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file:///C:/Users/paolo.ciaccia/Documents/_PAOLO/COURSES/TBD/SLIDES/Fagin-Event-LauraHaas.pdf
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The NRA algorithm: preliminaries

◼ NRA (No Random Access Algorithm) [FLN01,FLN03] is an algorithm that 
applies when r.a.’s cannot be executed (or their cost is really prohibitive)

◼ It correctly returns the top-k objects, but their scores might be wrong
◼ This is to limit the cost of the algorithm 

◼ The idea of NRA is to maintain, for each object o retrieved by s.a., a lower 
bound (lbscore), S-(o), and an upper bound (ubscore), S+(o), on its score
◼ S-(o) is obtained by setting pj(o) = 0 (or the minimal possible value of 

pj) if o has not been seen on Lj

◼ S+(o) is obtained by setting pj(o) = pj if o has not been seen on Lj

◼ NRA uses a buffer B with unlimited capacity, which is kept sorted according 
to decreasing lbscore values

OID p1

o1 1.0

o7 0.9

… …

OID p2

o2 0.8

o3 0.75

… …

OID p3

o7 0.6

o2 0.6

… …

OID lbscore ubscore

o7 1.5 2.25

o2 1.4 2.3

o1 1.0 2.35

o3 0.75 2.25

L1 L2 L3 S  SUM
B
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The NRA algorithm

Input: ranked lists Lj (j=1,…,m), integer k  1, monotone scoring function S

Output: the top-k objects according to S

1. B := ; // entry of type: [OID,lbscore,ubscore]; B is ordered by decreasing lbscore values

2. for j = 1 to m: pj := 1; 

3. while B[k].lbscore < max{max{B[i].ubscore, i > k},S(p1,p2,…,pm)}:

4. for j = 1 to m:

5. t := getNextLj(); o := t.OID; insert [o,S-(o),S+(o)] in B;

6. return {B[1],…,B[k]};

7. end.

◼ Let Res denote the first k positions of B, Res = {B[1],…,B[k]};

◼ The idea of the algorithm is to halt when no object o’ not in Res can do 
better than any of the objects in Res, i.e., when 

S+(o’)  S-(o)  o’ Res, o  Res

◼ To check this, it is sufficient to consider the maximum value of S+(o’) among 
the objects in B-Res and the threshold (the latter providing an upper bound 
to unseen objects) 
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NRA: example

OID p1

o1 1.0

o7 0.9

o2 0.7

o6 0.2

… …

OID p2

o2 0.8

o3 0.75

o4 0.5

o1 0.4

… …

OID p3

o7 0.6

o2 0.6

o3 0.5

o5 0.1

… …

L1 L2 L3 S  SUM
k = 2
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NRA: example

OID p1

o1 1.0

o7 0.9

o2 0.7

o6 0.2

… …

OID p2

o2 0.8

o3 0.75

o4 0.5

o1 0.4

… …

OID p3

o7 0.6

o2 0.6

o3 0.5

o5 0.1

… …

OID lbscore ubscore

o1 1.0 2.4

o2 0.8 2.4

o7 0.6 2.4

L1 L2 L3 S  SUM
k = 2

B (1st round)

0.8 < max{2.4,2.4}
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NRA: example

OID p1

o1 1.0

o7 0.9

o2 0.7

o6 0.2

… …

OID p2

o2 0.8

o3 0.75

o4 0.5

o1 0.4

… …

OID p3

o7 0.6

o2 0.6

o3 0.5

o5 0.1

… …

OID lbscore ubscore

o1 1.0 2.4

o2 0.8 2.4

o7 0.6 2.4

L1 L2 L3 S  SUM
k = 2

B (1st round)

OID lbscore ubscore

o7 1.5 2.25

o2 1.4 2.3

o1 1.0 2.35

o3 0.75 2.25

B (2nd round)

0.8 < max{2.4,2.4}

1.4 < max{2.35,2.25}



103.4

NRA: example

OID p1

o1 1.0

o7 0.9

o2 0.7

o6 0.2

… …

OID p2

o2 0.8

o3 0.75

o4 0.5

o1 0.4

… …

OID p3

o7 0.6

o2 0.6

o3 0.5

o5 0.1

… …

OID lbscore ubscore

o1 1.0 2.4

o2 0.8 2.4

o7 0.6 2.4

L1 L2 L3 S  SUM
k = 2

B (1st round)

OID lbscore ubscore

o7 1.5 2.25

o2 1.4 2.3

o1 1.0 2.35

o3 0.75 2.25

B (2nd round)

0.8 < max{2.4,2.4}

1.4 < max{2.35,2.25}

OID lbscore ubscore

o2 2.1 2.1

o7 1.5 2.0

o3 1.25 1.95

o1 1.0 2.0

o4 0.5 1.7

B (3rd round)

1.5 < max{2.0,1.7}
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NRA: example

OID p1

o1 1.0

o7 0.9

o2 0.7

o6 0.2

… …

OID p2

o2 0.8

o3 0.75

o4 0.5

o1 0.4

… …

OID p3

o7 0.6

o2 0.6

o3 0.5

o5 0.1

… …

OID lbscore ubscore

o1 1.0 2.4

o2 0.8 2.4

o7 0.6 2.4

L1 L2 L3 S  SUM
k = 2

B (1st round)

OID lbscore ubscore

o7 1.5 2.25

o2 1.4 2.3

o1 1.0 2.35

o3 0.75 2.25

B (2nd round)

0.8 < max{2.4,2.4}

1.4 < max{2.35,2.25}

OID lbscore ubscore

o2 2.1 2.1

o7 1.5 2.0

o3 1.25 1.95

o1 1.0 2.0

o4 0.5 1.7

B (3rd round)

1.5 < max{2.0,1.7}

OID lbscore ubscore

o2 2.1 2.1

o7 1.5 1.9

o1 1.4 1.5

o3 1.25 1.45

o4 0.5 0.8

B (4th round)

1.5  max{1.5,0.7}
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NRA: observations

◼ An interesting observation about NRA is that its cost does not grow 
monotonically with k, i.e., it might be cheaper to look for the top-k objects 
rather than for the top-(k-1) ones!

Example: 
◼ k = 1: the winner is o2 (S(o2) = 1.2),

since the score of o1 is S(o1) = 1.0
and that of all other objects is 0.6.
NRA has to reach depth N-1 to halt

◼ k = 2: to discover that the top-2
objects are o1 and o2 only 3 rounds
are needed

◼ Concerning instance optimality, it can be shown that NRA is instance-
optimal over all DB’s and all algorithms that do not execute random 
accesses, and its optimality ratio is m (i.e., if NRA halts at depth X, then any 
other algorithm B must read X objects from at least one list)

OID p1

o1 1.0

o2 1.0

… 0.3

… …

… 0.3

OID p2

… 0.3

… …

… 0.3

o2 0.2

o1 0

L1 L2 S  SUM
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NRA*: computing the exact scores

◼ If exact scores for the top-k objects are needed, the algorithm, which we call 
NRA*, will work as follows:
1) Run NRA until the top-k objects are determined (i.e., Res is stable)

2) Perform as many sorted accesses as needed until all the partial scores for 
the objects in Res are retrieved

◼ Note that NRA* will perform at least as many s.a.’s rounds as FA, and possibly 
many more
◼ FA halts, at depth X, after having seen k objects in all the lists (those in M) 

◼ NRA* cannot halt at a depth < X (since for at least one object in Res the 
exact score is not known); further, there is no guarantee that objects in M 
are also in Res

◼ It can be easily shown that NRA* is instance-optimal over all DB’s and all 
algorithms that compute the exact scores and do not execute random accesses, 
and its optimality ratio is m
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The CA algorithm

◼ CA (Combined Algorithm) [FLN01,FLN03] is an attempt to reduce the 
negative influence of high r.a. costs

◼ The idea of CA is simple: rather than performing r.a.’s at each round, just do 
them only every cRA/cSA rounds (more precisely:  cRA/cSA )

◼ In practice CA behaves as NRA (and as NRA keeps lower and upper bounds 
on objects’ scores), but every  cRA/cSA  s.a. rounds it performs random 
accesses

◼ The key point is for which object(s) such r.a.’s have to be invoked

◼ Not surprisingly, these are done for the object o that misses some partial 
scores and for which S+(o) is maximum

◼ Compared to TA, CA will execute more s.a.’s but less r.a.’s

◼ It can be proved that CA is instance-optimal, with an optimality ratio 
independent of cRA/cSA, but only if 
1) on each list scores are all distinct (no two objects tie on pj)

2) S  MIN or S is strictly monotone in each argument:whenever one pj is 
increased and the others stay unchanged, then the value of the S 
increases as well (e.g., SUM) 



107

The overall picture

Algorithm scoring f. S Data access Notes

B0 MAX sorted instance-optimal

MaxOptimal MAX sorted instance-optimal

FA monotone sorted and random cost independent of S

TA monotone sorted and random instance-optimal

NRA monotone sorted instance-optimal, wrong scores

NRA* monotone sorted instance-optimal, exact scores

CA monotone sorted and random
instance-optimal, 

optimality ratio independent of 
cRA/cSA in some cases
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Summary on top-k 1-1 join queries

◼ There are several algorithms to process a top-k 1-1 join query, all of which
are based on the assumption that the scoring function S is monotone

◼ The simplest case is when S  MAX: the basic B0 algorithm by Fagin can be 
improved (MaxOptimal) by exploiting principles similar to those applied for 
k-NN search

◼ Algorithm FA is the only one whose stopping condition just considers the 
local rankings of the objects rather than their partial scores

◼ The stopping condition of TA is based on a threshold T, which provides an 
upper bound to the scores of all unseen objects

◼ TA is instance-optimal, yet its optimality ratio depends on cRA/cSA, the ratio 
of random access to sorted access costs

◼ NRA does not execute random accesses at all

◼ CA is a combination of TA and NRA; it is instance-optimal (with optimality
ratio independent of cRA/cSA) only for a subset of scoring functions S and a 
subset of DB’s



109

Top-k join queries: the general case

◼ In a top-k join query we have n > 1 input relations and a scoring function S 
defined on the result of the join, i.e.:

SELECT  <some attributes>

FROM R1,R2,…,Rn

WHERE <join and local conditions>

ORDER BY S(p1,p2,…pm) [DESC]

STOP AFTER k

where p1,p2,…pm are scoring criteria (the "preferences")

◼ Now we consider the general case of many-to-many (M-N) joins, e.g.:

SELECT *

FROM   RESTAURANTS R, HOTELS H

WHERE  R.City = H.City

AND    R.Nation = ‘Italy’ 

AND    H.Nation = ‘Italy’

ORDER BY R.Price + H.Price

STOP AFTER 2

◼ Notice that the join is not anymore on the relations’ PK’s
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Top-k M-N join queries: example

HName City Price

La pensioncina Milano 40

Dormi Bene! Milano 50

RonfRonf Roma 60

La Cascina Bologna 80

La Quiete Bologna 85

Il Riposino Roma 90

CheapSleep Bologna 100

RName City Price

Al vecchio mulino Bologna 25

La tavernetta Roma 30

Tutti a tavola! Bologna 40

Le delizie del palato Milano 50

Acqua in bocca Roma 70

Restaurants

HotelsRName Hname City TotPrice

Al vecchio mulino La Cascina Bologna 105

Al vecchio mulino La Quiete Bologna 110

Al vecchio mulino CheapSleep Bologna 125

La tavernetta RonfRonf Roma 90

La tavernetta Il Riposino Roma 120

Tutti a tavola! La Cascina Bologna 115

Tutti a tavola! La Quiete Bologna 120

Tutti a tavola! CheapSleep Bologna 140

Le delizie del palato La pensioncina Milano 90

Le delizie del palato Dormi Bene! Milano 110

Acqua in bocca RonfRonf Roma 130

Acqua in bocca Il Riposino Roma 160

k = 5
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The "easy" case

◼ In the most favorable case we can access both (all) inputs using indexes on 
the join attributes (e.g., city)

◼ In this case the resulting algorithm is quite similar to TA:

1) Perform a round of s.a.’s

2) For each retrieved tuple:

2.1) using the index on the join attributes, do r.a.’s to retrieve all the 
matches on other inputs

2.2) keep only the best k so-resulting join combinations

2.3) If one of such new join combinations is among the top-k 
combinations seen so far, keep it, otherwise discard it

until the threshold condition is satisfied (i.e., when no unseen join 
combination can be better than any of the current top-k results)
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The easy case: example

HName City Price

La pensioncina Milano 40

Dormi Bene! Milano 50

RonfRonf Roma 60

La Cascina Bologna 80

La Quiete Bologna 85

Il Riposino Roma 90

CheapSleep Bologna 100

RName City Price

Al vecchio mulino Bologna 25

La tavernetta Roma 30

Tutti a tavola! Bologna 40

Le delizie del palato Milano 50

Acqua in bocca Roma 70

k = 2
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The easy case: example

HName City Price

La pensioncina Milano 40

Dormi Bene! Milano 50

RonfRonf Roma 60

La Cascina Bologna 80

La Quiete Bologna 85

Il Riposino Roma 90

CheapSleep Bologna 100

RName City Price

Al vecchio mulino Bologna 25

La tavernetta Roma 30

Tutti a tavola! Bologna 40

Le delizie del palato Milano 50

Acqua in bocca Roma 70

k = 2

RName Hname City TotPrice

Al vecchio mulino La Cascina Bologna 105

Al vecchio mulino La Quiete Bologna 110
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The easy case: example

HName City Price

La pensioncina Milano 40

Dormi Bene! Milano 50

RonfRonf Roma 60

La Cascina Bologna 80

La Quiete Bologna 85

Il Riposino Roma 90

CheapSleep Bologna 100

RName City Price

Al vecchio mulino Bologna 25

La tavernetta Roma 30

Tutti a tavola! Bologna 40

Le delizie del palato Milano 50

Acqua in bocca Roma 70

k = 2

RName Hname City TotPrice

Al vecchio mulino La Cascina Bologna 105

Al vecchio mulino La Quiete Bologna 110

RName Hname City TotPrice

Le delizie del palato La pensioncina Milano 90

Al vecchio mulino La Cascina Bologna 105
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The easy case: example

HName City Price

La pensioncina Milano 40

Dormi Bene! Milano 50

RonfRonf Roma 60

La Cascina Bologna 80

La Quiete Bologna 85

Il Riposino Roma 90

CheapSleep Bologna 100

RName City Price

Al vecchio mulino Bologna 25

La tavernetta Roma 30

Tutti a tavola! Bologna 40

Le delizie del palato Milano 50

Acqua in bocca Roma 70

k = 2

RName Hname City TotPrice

Al vecchio mulino La Cascina Bologna 105

Al vecchio mulino La Quiete Bologna 110

RName Hname City TotPrice

Le delizie del palato La pensioncina Milano 90

Al vecchio mulino La Cascina Bologna 105

RName Hname City TotPrice

Le delizie del palato La pensioncina Milano 90

La tavernetta RonfRonf Roma 90
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The easy case: example

HName City Price

La pensioncina Milano 40

Dormi Bene! Milano 50

RonfRonf Roma 60

La Cascina Bologna 80

La Quiete Bologna 85

Il Riposino Roma 90

CheapSleep Bologna 100

RName City Price

Al vecchio mulino Bologna 25

La tavernetta Roma 30

Tutti a tavola! Bologna 40

Le delizie del palato Milano 50

Acqua in bocca Roma 70

k = 2

RName Hname City TotPrice

Al vecchio mulino La Cascina Bologna 105

Al vecchio mulino La Quiete Bologna 110

RName Hname City TotPrice

Le delizie del palato La pensioncina Milano 90

Al vecchio mulino La Cascina Bologna 105

RName Hname City TotPrice

Le delizie del palato La pensioncina Milano 90

La tavernetta RonfRonf Roma 90
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The easy case: example

HName City Price

La pensioncina Milano 40

Dormi Bene! Milano 50

RonfRonf Roma 60

La Cascina Bologna 80

La Quiete Bologna 85

Il Riposino Roma 90

CheapSleep Bologna 100

RName City Price

Al vecchio mulino Bologna 25

La tavernetta Roma 30

Tutti a tavola! Bologna 40

Le delizie del palato Milano 50

Acqua in bocca Roma 70

k = 2

RName Hname City TotPrice

Al vecchio mulino La Cascina Bologna 105

Al vecchio mulino La Quiete Bologna 110

RName Hname City TotPrice

Le delizie del palato La pensioncina Milano 90

Al vecchio mulino La Cascina Bologna 105

RName Hname City TotPrice

Le delizie del palato La pensioncina Milano 90

La tavernetta RonfRonf Roma 90
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The “difficult” case: no random accesses

◼ If join indexes are not available, the only alternative is to compute the result
by using only sorted accesses, along the lines of NRA*

◼ The basic algorithm for this scenario is called Rank-Join [IAE03], and its
description requires the following additional notation:

◼ For each ranked list Lj, let pjmax denote the first (highest) score seen on Lj

◼ Let T be the maximum among the following m values:

S(p1,p2max,…,pmmax), S(p1max,p2,…,pmmax),…, S(p1max,p2max,…,pm)

◼ This is also called the "corner bound"

◼ Let j denote a generic join combination, i.e., j = (t1,t2,…,tm)

◼ The (at this point, obvious) observation is that one can halt when there are k 
join combinations j such that S(j) ≥ T

◼ S.a.’s can be executed using a round-robin strategy, by accessing the list for 
which pj si maximum, etc. 

http://www-db.disi.unibo.it/courses/TBD/papers/IAE03.pdf


Visualizing the corner bound

◼ For simplicity, assume p1max = p2max = 1, and S  SUM

◼ In the figure it is: p1 = 0.4 and p2 = 0.6

◼ Thus, T = max{(0.4+1),(1+0.6)} = 1.6
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No unseen join combination can have 
a score higher than T,
since in the best case an unseen tuple
from L2 will match a tuple from L1 
with score = 1

RankJoin stops when the current 
top-k results lie in this region
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Is the corner bound the best possible one?

◼ When m=2 it can be proved that Rank-Join is instance-optimal, i.e., the 
corner bound is tight (there could be a join combination j s.t. S(j) = T)

◼ On the other hand, when m > 2 things are more complex to analyze, and the 
instance optimality is guaranteed only if the join conditions are considered 
as a "black box"
◼ I.e., arguments to prove instance optimality do not consider the actual 

join conditions

◼ On the other hand, when the join predicates are taken into account, no 
algorithm based on the corner bound is instance-optimal [SP08]

◼ The same negative result holds even for n = 2 inputs, but in which at least 
one of the inputs has 2 partial scores for each tuple (i.e., n < m)
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http://www-db.disi.unibo.it/courses/TBD/papers/SP08.pdf


Rank-Join: example of non optimality

◼ After the first 3 s.a.’s rounds, the corner bound yields T = 0.9 + 1 + 1 = 2.9

◼ However, no unseen tuple from L1 can lead to a join combination j with 
S(j) > 2.5, thus we could stop here, with just 9 s.a.’s!

◼ On the other hand, on this instance Rank-Join might incur an arbitrarily high 
cost, depending on how scores are distributed
◼ Notice that the number of tuples in L1 between (x,0.9) and (w,0.5) is 

unbounded

116.1

SELECT *

FROM   R1,R2,R3

WHERE  R1.A = R2.A 

AND    R1.A = R3.A

ORDER BY p1 + p2 + p3 DESC

STOP AFTER 1

A p1

a 1.0

x 0.95

x 0.9

… …

… …

w 0.5

A p2

y 1.0

a 0.7

y 0.4

… …

A p3

z 1.0

a 0.8

z 0.4

… …

S  SUM



Rank-Join: example of non optimality

◼ After the first 3 s.a.’s rounds, the corner bound yields T = 0.9 + 1 + 1 = 2.9

◼ However, no unseen tuple from L1 can lead to a join combination j with 
S(j) > 2.5, thus we could stop here, with just 9 s.a.’s!

◼ On the other hand, on this instance Rank-Join might incur an arbitrarily high 
cost, depending on how scores are distributed
◼ Notice that the number of tuples in L1 between (x,0.9) and (w,0.5) is 

unbounded

116.2

SELECT *

FROM   R1,R2,R3

WHERE  R1.A = R2.A 

AND    R1.A = R3.A

ORDER BY p1 + p2 + p3 DESC

STOP AFTER 1

A p1

a 1.0

x 0.95

x 0.9

… …

… …

w 0.5

A p2

y 1.0

a 0.7

y 0.4

… …

A p3

z 1.0

a 0.8

z 0.4

… …

S  SUM



Rank-Join: example of non optimality

◼ After the first 3 s.a.’s rounds, the corner bound yields T = 0.9 + 1 + 1 = 2.9

◼ However, no unseen tuple from L1 can lead to a join combination j with 
S(j) > 2.5, thus we could stop here, with just 9 s.a.’s!

◼ On the other hand, on this instance Rank-Join might incur an arbitrarily high 
cost, depending on how scores are distributed
◼ Notice that the number of tuples in L1 between (x,0.9) and (w,0.5) is 

unbounded

116.3

SELECT *

FROM   R1,R2,R3

WHERE  R1.A = R2.A 

AND    R1.A = R3.A

ORDER BY p1 + p2 + p3 DESC

STOP AFTER 1

A p1

a 1.0

x 0.95

x 0.9

… …

… …

w 0.5

A p2

y 1.0

a 0.7

y 0.4

… …

A p3

z 1.0

a 0.8

z 0.4

… …

S  SUM

j S

(a,a,a) 2.5



Rank-Join: example of non optimality

◼ After the first 3 s.a.’s rounds, the corner bound yields T = 0.9 + 1 + 1 = 2.9

◼ However, no unseen tuple from L1 can lead to a join combination j with 
S(j) > 2.5, thus we could stop here, with just 9 s.a.’s!

◼ On the other hand, on this instance Rank-Join might incur an arbitrarily high 
cost, depending on how scores are distributed
◼ Notice that the number of tuples in L1 between (x,0.9) and (w,0.5) is 

unbounded

116.4

SELECT *

FROM   R1,R2,R3

WHERE  R1.A = R2.A 

AND    R1.A = R3.A

ORDER BY p1 + p2 + p3 DESC

STOP AFTER 1

A p1

a 1.0

x 0.95

x 0.9

… …

… …

w 0.5

A p2

y 1.0

a 0.7

y 0.4

… …

A p3

z 1.0

a 0.8

z 0.4

… …

S  SUM

j S

(a,a,a) 2.5

Res



Rank-Join: example of non optimality

◼ After the first 3 s.a.’s rounds, the corner bound yields T = 0.9 + 1 + 1 = 2.9

◼ However, no unseen tuple from L1 can lead to a join combination j with 
S(j) > 2.5, thus we could stop here, with just 9 s.a.’s!

◼ On the other hand, on this instance Rank-Join might incur an arbitrarily high 
cost, depending on how scores are distributed
◼ Notice that the number of tuples in L1 between (x,0.9) and (w,0.5) is 

unbounded

116.5

SELECT *

FROM   R1,R2,R3

WHERE  R1.A = R2.A 

AND    R1.A = R3.A

ORDER BY p1 + p2 + p3 DESC

STOP AFTER 1

A p1

a 1.0

x 0.95

x 0.9

… …

… …

w 0.5

A p2

y 1.0

a 0.7

y 0.4

… …

A p3

z 1.0

a 0.8

z 0.4

… …

S  SUM

j S

(a,a,a) 2.5

Res



A tight bounding scheme: results

◼ Besides showing the deficiencies of Rank-Join, [SP08] has also introduced  a 
tight bounding scheme that guarantees instance optimality

◼ The method, not described here, has the following major features:

◼ It has polynomial data complexity, i.e., it runs in time polynomial in the 
number of tuples retrieved from the ranked lists

◼ It is NP-hard under query complexity, i.e.,  its running time grows 
exponentially with the number of inputs

◼ Interestingly, it relies on the concept of "tuple dominance", which is at the 
core of skyline queries
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Ranking as a first-class concept in a DBMS

◼ A challenge concerning top-k queries is how to incorporate ranking-based
techniques in a relational DBMS

◼ This is needed to improve performance for general top-k queries

◼ The RankDB project (http://www.cs.uwaterloo.ca/~ilyas/RankDB/) has
provided fundamental contributions towards the solution of this problem, 
leading to a prototype system, called RankSQL [LCI+05], in which ranking is
treated as a "first-class" citizen

◼ We sketch the basic concepts of RankSQL, in particular:

◼ The "splitting and interleaving" requirements

◼ The concept of "rank-relation" and the "ranking principle"

◼ The "rank algebra" for rank-relations

http://www.cs.uwaterloo.ca/~ilyas/RankDB/
http://www-db.disi.unibo.it/courses/TBD/papers/LCI+05.pdf


Splitting and interleaving

◼ Consider the following query SQL:
SELECT *

FROM   RESTAURANTS R, HOTELS H

WHERE  R.Area = H.Area

AND    H.Stars = 3 

AND    R.Cuisine = ‘chinese’

◼ A possible access plan (P1) for this query is:

◼ P1 is much better than the following "monolithic" plan (P2) in which ‘x’ 

denotes the Cartesian product: 
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HOTELS

sStars = 3

RESTAURANTS



H.Area = R.Area

sCuisine = ‘chinese’

HOTELS RESTAURANTS



s(Stars = 3) AND (Cuisine = ‘chinese’)
AND (H.Area = R.Area)

P1

P2

We can transform P2 into P1 by:
• SPLITTING the Boolean predicates 

into joins and selection, and
• INTERLEAVING them

The same should be done with the 
ranking function!



Rank-relations and the ranking principle

◼ To make query optimizers "rank-aware" it is necessary to introduce the 
concept of rank-relation, i.e., a relation that consists of tuples with scores

◼ The definition is tightly related to the ranking principle, which formalizes 
the now-well-known fact that the "most promising" tuples should be 
processed first

◼ Notice that SP
+(t) = S(t) when P = {p1,p2,…,pm}, and that R  R
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Rank-relation:
Given a relation R and a monotone scoring function S(p1,p2,…,pm), the rank-
relation RP, with P  {p1,p2,…,pm}, is the relation R augmented  with a ranking 
defined as follows:

• The score of a tuple t in RP is the maximal possible score, SP
+(t), with 

respect to S, where SP
+(t) is computed by substituing in S the values of pj(t), 

if pj P, otherwise 1 (or the maximum possible value for pj)

• Tuples in RP are ranked by decreasing values of SP
+(t) (ranking principle)



The RankSQL algebra

◼ The RankSQL algebra extends the semantics of RA to rank-relations

◼ It introduces a new rank operator, , which applies to a rank-relation RP a 
not-evaluated-yet preference p (p  P), yielding the new rank-relation RP{p}

◼ The  operator is the basis to split the scoring function S(p1,p2,…,pm), since:

R{p1,p2,…,pm} = p1(p2(…(pm(R))))
i.e., the final ranking can be obtained by applying one-by-one the preferences 

◼ Any order of evaluation is admissible, since p1(p2(RP)) = p2(p1(RP))

◼ Interleaving with selections and joins is now possible, e.g., for selection:

p(sc(RP)) = sc (p(RP))

◼ Because of the ranking principle, a p operator can return a tuple t iff it is 
guaranteed that there is no unseen tuple t’ such that SP{p}

+(t’) > SP {p}
+(t) 

◼ This can be done as soon as p fetches a tuple t’’ such that SP{p}
+(t) ≥ SP

+(t’’)

◼ Index (and sequential) scans are also treated as operators, since they could be 
used in place of  to rank tuples according to a preference p 
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The rank operator in action

122

Hotel … p1 p2 p3 score

h1 0.7 0.8 0.9 2.4

h2 0.9 0.85 0.8 2.55

h3 0.5 0.45 0.75 1.7

h4 0.4 0.7 0.95 2.05

… … … … …

SELECT *

FROM   HOTELS H

ORDER BY p1+p2+p3 DESC

STOP AFTER 1

HOTELS

p2

p3

IdxScanp1

t1

Hotel S{p1}
+

Hotel S{p1,p2,p3}
+ = S

Hotel S{p1,p2}
+

Hp1

Hp1, p2

Hp1, p2, p3



The rank operator in action
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Hotel … p1 p2 p3 score

h1 0.9 1.0 1.0 2.9

h2 0.9 1.0 1.0 2.9

h3 0.9 1.0 1.0 2.9

h4 0.9 1.0 1.0 2.9

… 0.9 1.0 1.0 2.9

Hp1

Hp1, p2

Hp1, p2, p3

Hotel S+

h2 2.9

Hotel S+

Hotel S+

SELECT *

FROM HOTELS H

ORDER BY p1+p2+p3 DESC

STOP AFTER 1

HOTELS

p2

p3

IdxScanp1

t1



The rank operator in action
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Hotel … p1 p2 p3 score

h1 0.9 1.0 1.0 2.9

h2 0.9 1.0 1.0 2.9

h3 0.9 1.0 1.0 2.9

h4 0.9 1.0 1.0 2.9

… 0.9 1.0 1.0 2.9

Hp1

Hp1, p2

Hp1, p2, p3

Hotel S+

h2 2.9

Hotel S+

Hotel S+

h2 2.9

SELECT *

FROM HOTELS H

ORDER BY p1+p2+p3 DESC

STOP AFTER 1

HOTELS

p2

p3

IdxScanp1

t1



The rank operator in action
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Hotel … p1 p2 p3 score

h1 0.9 1.0 1.0 2.9

h2 0.9 0.85 1.0 2.75

h3 0.9 1.0 1.0 2.9

h4 0.9 1.0 1.0 2.9

… 0.9 1.0 1.0 2.9

Hp1

Hp1, p2

Hp1, p2, p3

Hotel S+

h2 2.9

Hotel S+

Hotel S+

h2 2.75

SELECT *

FROM HOTELS H

ORDER BY p1+p2+p3 DESC

STOP AFTER 1

HOTELS

p2

p3

IdxScanp1

t1



The rank operator in action
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Hotel … p1 p2 p3 score

h1 0.7 1.0 1.0 2.7

h2 0.9 0.85 1.0 2.75

h3 0.7 1.0 1.0 2.7

h4 0.7 1.0 1.0 2.7

… 0.7 1.0 1.0 2.7

Hp1

Hp1, p2

Hp1, p2, p3

Hotel S+

h2 2.9

h1 2.7

Hotel S+

Hotel S+

h2 2.75

SELECT *

FROM HOTELS H

ORDER BY p1+p2+p3 DESC

STOP AFTER 1

HOTELS

p2

p3

IdxScanp1

t1



The rank operator in action
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Hotel … p1 p2 p3 score

h1 0.7 0.8 1.0 2.5

h2 0.9 0.85 1.0 2.75

h3 0.7 1.0 1.0 2.7

h4 0.7 1.0 1.0 2.7

… 0.7 1.0 1.0 2.7

Hp1

Hp1, p2

Hp1, p2, p3

Hotel S+

h2 2.9

h1 2.7

Hotel S+

Hotel S+

h2 2.75

h1 2.5 (*)

(*) Evaluation of p2 can be delayed

SELECT *

FROM HOTELS H

ORDER BY p1+p2+p3 DESC

STOP AFTER 1

HOTELS

p2

p3

IdxScanp1

t1



The rank operator in action
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Hotel … p1 p2 p3 score

h1 0.7 0.8 1.0 2.5

h2 0.9 0.85 0.8 2.55

h3 0.7 1.0 1.0 2.7

h4 0.7 1.0 1.0 2.7

… 0.7 1.0 1.0 2.7

Hp1

Hp1, p2

Hp1, p2, p3

Hotel S+

h2 2.9

h1 2.7

Hotel S+

h2 2.55

Hotel S+

h2 2.75

h1 2.5

SELECT *

FROM HOTELS H

ORDER BY p1+p2+p3 DESC

STOP AFTER 1

HOTELS

p2

p3

IdxScanp1

t1



The rank operator in action

129

Hotel … p1 p2 p3 score

h1 0.7 0.8 1.0 2.5

h2 0.9 0.85 0.8 2.55

h3 0.5 1.0 1.0 2.5

h4 0.5 1.0 1.0 2.5

… 0.5 1.0 1.0 2.5

Hp1

Hp1, p2

Hp1, p2, p3

Hotel S+

h2 2.9

h1 2.7

h3 2.5

Hotel S+

h2 2.55

Hotel S+

h2 2.75

h1 2.5

SELECT *

FROM HOTELS H

ORDER BY p1+p2+p3 DESC

STOP AFTER 1

HOTELS

p2

p3

IdxScanp1

t1



The rank operator in action
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Hotel … p1 p2 p3 score

h1 0.7 0.8 1.0 2.5

h2 0.9 0.85 0.8 2.55

h3 0.5 0.45 1.0 1.95

h4 0.5 1.0 1.0 2.5

… 0.5 1.0 1.0 2.5

Hp1

Hp1, p2

Hp1, p2, p3

Hotel S+

h2 2.9

h1 2.7

h3 2.5

Hotel S+

h2 2.55

Hotel S+

h2 2.75

h1 2.5

h3 1.95 (*)

(*) Evaluation of p2 can be delayed

SELECT *

FROM HOTELS H

ORDER BY p1+p2+p3 DESC

STOP AFTER 1

HOTELS

p2

p3

IdxScanp1

t1



The rank operator in action
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Hotel … p1 p2 p3 score

h1 0.7 0.8 0.9 2.4

h2 0.9 0.85 0.8 2.55

h3 0.5 0.45 1.0 1.95

h4 0.5 1.0 1.0 2.5

… 0.5 1.0 1.0 2.5

Hp1

Hp1, p2

Hp1, p2, p3

Hotel S+

h2 2.9

h1 2.7

h3 2.5

Hotel S+

h2 2.55

h1 2.4 (*)

Hotel S+

h2 2.75

h1 2.5

h3 1.95

(*) Evaluation of p3 can be omitted

SELECT *

FROM HOTELS H

ORDER BY p1+p2+p3 DESC

STOP AFTER 1

HOTELS

p2

p3

IdxScanp1

t1



The rank operator in action
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Hotel … p1 p2 p3 score

h1 0.7 0.8 0.9 2.4

h2 0.9 0.85 0.8 2.55

h3 0.5 0.45 1.0 1.95

h4 0.5 1.0 1.0 2.5

… 0.5 1.0 1.0 2.5

Hp1

Hp1, p2

Hp1, p2, p3

Hotel S+

h2 2.9

h1 2.7

h3 2.5

Hotel S+

h2 2.55

h1 2.4

Hotel S+

h2 2.75

h1 2.5

h3 1.95

SELECT *

FROM HOTELS H

ORDER BY p1+p2+p3 DESC

STOP AFTER 1

HOTELS

p2

p3

IdxScanp1

t1



SELECT *  -- example adapted from [LCI+05]

FROM   A,B,C

WHERE  A.X = B.X 

AND B.Y = C.Y

AND    A.W = 1 

AND    B.Z = 1 

ORDER BY A.p1 + A.p2 + B.p3 + B.p4 + C.p5 DESC

STOP AFTER k 

◼ A traditional (not rank-aware) plan for
processing the query could just exploit
a Top-Sort operator to avoid sorting all
the tuples produced by the second 
(top-most) join  

RankSQL: an example (1)
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Plan 1 (traditional)

A

sA.W=1



Sort-Merge

IdxScanX

B

sB.Z=1

IdxScanX

SortY

C

IdxScanY



Sort-Merge

Top-Sortk,S



◼ With rank-aware operators several alternative plans
are possible

RankSQL: an example (2)
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Plan 2)

A

sA.W=1



Rank-Join

IdxScanp1

B

sB.Z=1

IdxScanp3

C

IdxScanp5



Rank-Join

Top-Scank,S

p2 p4

Plan 3)

A

sA.W=1



Rank-Join

IdxScanp1

B

sB.Z=1

SeqScan

C

IdxScanp5



Rank-Join

Top-Scank,S

p2

p4

p3

Plan 4)

A

sA.W=1



Sort-Merge

IdxScanX

B

sB.Z=1

IdxScanX

C

IdxScanp5



Rank-Join

Top-Scank,S

p3

p4

p1

p2
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◼ None of the plans is always the best → need for optimization

◼ The (optimal) traditional plan is almost never the best one

Experimental results (from [LCI+05])
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On the placement of the Top operator

◼ As a final issue concerning top-k queries, let us consider the problem of 
where the Top operator can be placed in an access plan

◼ The default placement is at the top of the access plan
◼ Notice that this was also the case for the rank-aware plans in the 

previous example

◼ However, in some cases it is possible to earlier discard tuples in excess, for 
instance:

SELECT E.*, D.Dname

FROM   EMP E, DEPT D 

WHERE  E.DNO = D.DNO

ORDER BY E.Salary DESC

STOP AFTER 100

◼ Here we can just join the top-100
employees

EMP



SeqScan DEPT

IdxScanDNOTop-Sort100,Salary
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Safe Top placement rule

◼ If we anticipate the evaluation of the Top operator, we must be sure that
none of its output tuples is subsequently discarded by other operators

◼ Similar issues when pushing-down a GROUP BY 

◼ This can be verified by looking at:

◼ DB integrity constraints (FK,PK,NOT NULL,…), and

◼ The query predicates that remain to be evaluated after the Top operator 
is executed

SELECT E.*, D.Dname

FROM   EMP E, DEPT D 

WHERE  E.DNO = D.DNO

ORDER BY E.Salary DESC

STOP AFTER 100

◼ Here the Top operator can be pushed-down the join provided E.DNO is
declared as a foreign key with non-null values
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Summary on top-k M-N join queries

◼ For general (M-N) top-k join queries, the simplest case to deal with is when
random accesses are possible, in which case the principles of TA algorithm
apply

◼ The Rank-Join operator has been designed for scenarios in which r.a.’s are 
not possible

◼ Rank-Join with the "corner bound" is instance-optimal only when join 
conditions are not taken into account or when there are only 2 inputs, each
with a single partial score

◼ The RankSQL algebra represents a relevant contribution in making DBMS’s
fully "rank-aware"

◼ Its design principles derive from the requirements of "splitting and 
intearleaving" the evaluation of the scoring function

◼ RankSQL manages rank-relations, in which tuples are ranked according to 
the "ranking principle"

◼ The novel rank operator evaluates a single preference
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